Advertisement

A Uniform Theory of Adequate Subgraphs for the Genome Median, Halving, and Aliquoting Problems

  • Pavel AvdeyevEmail author
  • Maria Atamanova
  • Max A. Alekseyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11488)

Abstract

One of the key computational problems in comparative genomics is the reconstruction of genomes of ancestral species based on genomes of extant species. Since most dramatic changes in genomic architectures are caused by genome rearrangements, this problem is often posed as minimization of the number of genome rearrangements between extant and ancestral genomes. The basic case of three given genomes is known as the genome median problem. Whole genome duplications (WGDs) represent yet another type of dramatic evolutionary events and inspire the reconstruction of pre-duplicated ancestral genomes, referred to as the genome halving problem. Generalization of WGDs to whole genome multiplication events leads to the genome aliquoting problem.

In the present study, we generalize the adequate subgraphs approach previously proposed for the genome median problem to the genome halving and aliquoting problems. Our study lays a theoretical foundation for practical algorithms for the reconstruction of pre-duplicated ancestral genomes.

Keywords

Genome rearrangement Breakpoint graph Adequate subgraph Whole genome duplication Genome halving Genome aliquoting Genome median 

Notes

Acknowledgements

The work of Maria Atamanova was supported by the Government of the Russian Federation (Grant 08-08) and JetBrains Research.

References

  1. 1.
    Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications, multi-break rearrangements, and genome halving problem. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 665–679. Society for Industrial and Applied Mathematics, Philadelphia (2007)Google Scholar
  2. 2.
    Alekseyev, M.A., Pevzner, P.A.: Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 98–107 (2007)CrossRefGoogle Scholar
  3. 3.
    Alekseyev, M.A., Pevzner, P.A.: Multi-break rearrangements and chromosomal evolution. Theor. Comput. Sci. 395(2), 193–202 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alexeev, N., Avdeyev, P., Alekseyev, M.A.: Comparative genomics meets topology: a novel view on genome median and halving problems. BMC Bioinform. 17(Suppl. 14), 213–223 (2016)Google Scholar
  5. 5.
    Avdeyev, P., Alexeev, N., Rong, Y., Alekseyev, M.A.: A unified ILP framework for genome median, halving, and aliquoting problems under DCJ. In: Meidanis, J., Nakhleh, L. (eds.) (RECOMB-CG). LNCS, vol. 10562, pp. 156–178. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-67979-2_9CrossRefGoogle Scholar
  6. 6.
    Avdeyev, P., Jiang, S., Aganezov, S., Hu, F., Alekseyev, M.A.: Reconstruction of ancestral genomes in presence of gene gain and loss. J. Comput. Biol. 23(3), 150–164 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caprara, A.: The reversal median problem. INFORMS J. Comput. 15(1), 93–113 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dehal, P., Boore, J.L.: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3(10), e314 (2005)CrossRefGoogle Scholar
  9. 9.
    El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32(3), 754–792 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao, N., Yang, N., Tang, J.: Ancestral genome inference using a genetic algorithm approach. PLOS ONE 8(5), 1–6 (2013)Google Scholar
  11. 11.
    Gavranović, H., Tannier, E.: Guided genome halving: provably optimal solutions provide good insights into the preduplication ancestral genome of saccharomyces cerevisiae. Pac. Symp. Biocomput. 15, 21–30 (2010)Google Scholar
  12. 12.
    Guyot, R., Keller, B.: Ancestral genome duplication in rice. Genome 47(3), 610–614 (2004)CrossRefGoogle Scholar
  13. 13.
    Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428(6983), 617–624 (2004)CrossRefGoogle Scholar
  14. 14.
    Postlethwait, J.H., et al.: Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18(4), 345–349 (1998)CrossRefGoogle Scholar
  15. 15.
    Rajan, V., Xu, A.W., Lin, Y., Swenson, K.M., Moret, B.M.E.: Heuristics for the inversion median problem. BMC Bioinform. 11(Suppl. 1), S30 (2010)CrossRefGoogle Scholar
  16. 16.
    Ruofan, X., Yu, L., Jun, Z., Bing, F., Jijun, T.: A median solver and phylogenetic inference based on double-cut-and-join sorting. J. Comput. Biol. 25(3), 302–312 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10, 120 (2009)CrossRefGoogle Scholar
  18. 18.
    Warren, R., Sankoff, D.: Genome aliquoting with double cut and join. BMC Bioinform. 10(Suppl. 1), S2 (2009)CrossRefGoogle Scholar
  19. 19.
    Xu, A.W.: A fast and exact algorithm for the median of three problem: a graph decomposition approach. J. Comput. Biol. 16(10), 1369–1381 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xu, A.W.: DCJ median problems on linear multichromosomal genomes: graph representation and fast exact solutions. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 70–83. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04744-2_7CrossRefGoogle Scholar
  21. 21.
    Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 25–37. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87361-7_3CrossRefGoogle Scholar
  22. 22.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar
  23. 23.
    Zhang, M., Arndt, W., Tang, J.: An exact solver for the DCJ median problem. In: Pacific Symposium on Biocomputing 2009, pp. 138–149. World Scientific (2009)Google Scholar
  24. 24.
    Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes. Bioinformatics 24(13), i96 (2008)CrossRefGoogle Scholar
  25. 25.
    Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evol. Bioinform. 2, 295–302 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computational Biology InstituteThe George Washington UniversityAshburnUSA
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations