Discriminant Chronicle Mining

  • Yann DauxaisEmail author
  • David Gross-Amblard
  • Thomas Guyet
  • André Happe
Part of the Studies in Computational Intelligence book series (SCI, volume 834)


Sequential pattern mining attempts to extract frequent behaviors from a sequential dataset. When sequences are labeled, it is interesting to extract behaviors that characterize each sequence class. This task is called discriminant pattern mining. In this paper, we introduce discriminant chronicle mining. Conceptually, a  chronicle is a temporal graph whose vertices are events and whose edges represent numerical temporal constraints between these events. We propose DCM, an algorithm that mines discriminant chronicles. It is based on rule learning methods that extract the temporal constraints. Computational performances and discriminant power of extracted chronicles are evaluated on synthetic and real data. Finally, we apply this algorithm to the case study consisting in analyzing care pathways of epileptic patients.



This project has been founded by the French Agency of Medicines and Health Products Safety (ANSM). We would like to thank Pr. E. Oger and Pharm.D E. Polard for agreeing to study the patterns extracted from the real dataset.


  1. Achar, A., Laxman, S., & Sastry, P. (2012). A unified view of the apriori-based algorithms for frequent episode discovery. Knowledge and Information Systems, 31(2), 223–250.CrossRefGoogle Scholar
  2. Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. In Proceedings of the International Conference on Data Engineering, pp. 3–14. IEEE.Google Scholar
  3. Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2), 123–154.zbMATHCrossRefGoogle Scholar
  4. Alvarez, M. R., Felix, P., & Carinena, P. (2013). Discovering metric temporal constraint networks on temporal databases. Artificial Intelligence in Medicine, 58(3), 139–154.CrossRefGoogle Scholar
  5. Batal, I., Valizadegan, H., Cooper, G. F., & Hauskrecht, M. (2013). A temporal pattern mining approach for classifying electronic health record data. ACM Transactions on Intelligent Systems and Technology (TIST), 4(4), 63.Google Scholar
  6. Bay, S. D., & Pazzani, M. J. (2001). Detecting group differences: Mining contrast sets. Data Mining and Knowledge Discovery, 5(3), 213–246.zbMATHCrossRefGoogle Scholar
  7. Berlingerio, M., Bonchi, F., Giannotti, F., & Turini, F. (2007). Mining clinical data with a temporal dimension: A case study. In Proceedings of the International Conference on Bioinformatics and Biomedicine, pp. 429–436.Google Scholar
  8. Bornemann, L., Lecerf, J., & Papapetrou, P. (2016). STIFE: A framework for feature-based classification of sequences of temporal intervals. In International Conference on Discovery Science, pp. 85–100. Springer, Cham.Google Scholar
  9. Bringmann, B., Nijssen, S., & Zimmermann, A. (2011). Pattern-based classification: a unifying perspective. arXiv preprint arXiv:1111.6191.
  10. Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the International Conference on Machine Learning, pp. 115–123.CrossRefGoogle Scholar
  11. Concaro, S., Sacchi, L., Cerra, C., Fratino, P., & Bellazzi, R. (2009). Mining healthcare data with temporal association rules: Improvements and assessment for a practical use. In Conference on Artificial Intelligence in Medicine in Europe, pp. 16–25.Google Scholar
  12. Cram, D., Mathern, B., & Mille, A. (2012). A complete chronicle discovery approach: Application to activity analysis. Expert Systems, 29(4), 321–346.CrossRefGoogle Scholar
  13. Dauxais, Y., Guyet, T., Gross-Amblard, D., & Happe, A. (2017). Discriminant chronicles mining: Application to care pathways analytics. In Proceedings of the Conference on Artificial Intelligence in Medicine, pp. 234–244. Springer, Cham.Google Scholar
  14. Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49, 61–95.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Dong, G., & Li, J. (1999). Efficient mining of emerging patterns: Discovering trends and differences. In Proceedings of ACM SIGKDD, pp. 43–52.Google Scholar
  16. Doran, G., & Ray, S. (2014). A theoretical and empirical analysis of support vector machine methods for multiple-instance classification. Machine Learning, 97(1), 79–102.Google Scholar
  17. Dousson, C., & Duong, T. V. (1999). Discovering chronicles with numerical time constraints from alarm logs for monitoring dynamic systems. In Proceedings of International Conference on Artificial Intelligence, pp. 620–626.Google Scholar
  18. Duivesteijn, W., Feelders, A. J., & Knobbe, A. (2016). Exceptional model mining. Data Mining and Knowledge Discovery, 30(1), 47–98.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Fabrègue, M., Braud, A., Bringay, S., Grac, C., Le Ber, F., Levet, D., et al. (2014). Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment. Ecological Informatics, 24, 210–221.CrossRefGoogle Scholar
  20. Fabrègue, M., Braud, A., Bringay, S., Le Ber, F., & Teisseire, M. (2013). Orderspan: Mining closed partially ordered patterns. In International Symposium on Intelligent Data Analysis, pp. 186–197. Springer, Heidelberg.Google Scholar
  21. Foulds, J., & Frank, E. (2010). A review of multi-instance learning assumptions. The Knowledge Engineering Review, 25(01), 1–25.CrossRefGoogle Scholar
  22. Fradkin, D., & Mörchen, F. (2015). Mining sequential patterns for classification. Knowledge and Information Systems, 45(3), 731–749.CrossRefGoogle Scholar
  23. Guyet, T., & Quiniou, R. (2011). Extracting temporal patterns from interval-based sequences. In Proceedings of International Joint Conference on Artificial Intelligence, pp. 1306–1311.Google Scholar
  24. Herrera, F., Carmona, C. J., González, P., & Del Jesus, M. J. (2011). An overview on subgroup discovery: Foundations and applications. Knowledge and Information Systems, 29(3), 495–525.CrossRefGoogle Scholar
  25. Huang, Z., Lu, X., & Duan, H. (2012). On mining clinical pathway patterns from medical behaviors. Artificial Intelligence in Medicine, 56(1), 35–50.CrossRefGoogle Scholar
  26. Lakshmanan, G. T., Rozsnyai, S., & Wang, F. (2013). Investigating clinical care pathways correlated with outcomes. In Business process management, pp. 323–338. Springer, Heidelberg.Google Scholar
  27. Lattner, A. D., Kim, S., Cervone, G., & Grefenstette, J. J. (2003). Experimental comparison of symbolic learning programs for the classification of gene network topology models. Center for Computing Technologies-TZI, 2, 1.Google Scholar
  28. Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490.
  29. Mabroukeh, N. R., & Ezeife, C. I. (2010). A taxonomy of sequential pattern mining algorithms. ACM Journal of Computing Survey, 43(1), 1–41.CrossRefGoogle Scholar
  30. Mannila, H., Toivonen, H., & Inkeri Verkamo, A. (1997). Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3), 259–289.CrossRefGoogle Scholar
  31. Mäntyjärvi, J., Himberg, J., Kangas, P., Tuomela, U., & Huuskonen, P. (2004). Sensor signal data set for exploring context recognition of mobile devices. In Proceedings of 2nd International Conference on Pervasive Computing (PERVASIVE 2004), pp. 18–23.Google Scholar
  32. Mooney, C. H., & Roddick, J. F. (2013). Sequential pattern mining—approaches and algorithms. ACM Journal of Computing Survey, 45(2), 1–39.zbMATHCrossRefGoogle Scholar
  33. Moskovitch, R., & Shahar, Y. (2015). Fast time intervals mining using the transitivity of temporal relations. Knowledge and Information Systems, 42(1), 21–48.CrossRefGoogle Scholar
  34. Moulis, G., Lapeyre-Mestre, M., Palmaro, A., Pugnet, G., Montastruc, J.-L., & Sailler, L. (2015). French health insurance databases: What interest for medical research? La Revue de Médecine Interne, 36(6), 411–417.CrossRefGoogle Scholar
  35. Novak, P. K., Lavrač, N., & Webb, G. I. (2009). Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–403.zbMATHGoogle Scholar
  36. Papapetrou, P., Kollios, G., Sclaroff, S., & Gunopulos, D. (2005). Discovering frequent arrangements of temporal intervals. In Fifth IEEE International Conference on Data Mining, pp. 8–pp. IEEE.Google Scholar
  37. Pei, J., Han, J., & Wang, W. (2002). Mining sequential patterns with constraints in large databases. In Proceedings of the International Conference on Information and Knowledge Management, pp. 18–25. ACM.Google Scholar
  38. Polard, E., Nowak, E., Happe, A., Biraben, A., & Oger, E. (2015). Brand name to generic substitution of antiepileptic drugs does not lead to seizure-related hospitalization: A population-based case-crossover study. Pharmacoepidemiology and Drug Safety, 24(11), 1161–1169.CrossRefGoogle Scholar
  39. Quiniou, R., Cordier, M., Carrault, G., & Wang, F. (2001). Application of ILP to cardiac arrhythmia characterization for chronicle recognition. In Proceedings of International Conference on Inductive Logic Programming, pp. 220–227.Google Scholar
  40. Sahuguède, A., Fergani, S., Le Corronc, E., & Le Lann, M.-V. (2018). Mapping chronicles to a k-dimensional Euclidean space via random projections. In 14th International Conference on Automation Science and Engineering (CASE), 6p. IEEE.Google Scholar
  41. Santisteban, J. & Tejada-Cárcamo, J. (2015). Unilateral Jaccard similarity coefficient. In GSB@ SIGIR, pp. 23–27.Google Scholar
  42. Starner, T., Weaver, J., & Pentland, A. (1998). Real-time american sign language recognition using desk and wearable computer based video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1371–1375.CrossRefGoogle Scholar
  43. Uno, T., Kiyomi, M., & Arimura, H. (2004). LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In FIMI, vol. 126.Google Scholar
  44. Wright, A. P., Wright, A. T., McCoy, A. B., & Sittig, D. F. (2015). The use of sequential pattern mining to predict next prescribed medications. Journal of Biomedical Informatics, 53, 73–80.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yann Dauxais
    • 1
    Email author
  • David Gross-Amblard
    • 1
  • Thomas Guyet
    • 2
  • André Happe
    • 3
  1. 1.Rennes University-1/IRISA-UMR 6074RennesFrance
  2. 2.AGROCAMPUS-OUEST/IRISA-UMR 6074RennesFrance
  3. 3.CHRU Brest/EA-7449 REPERESBrestFrance

Personalised recommendations