Advertisement

Efficient Guarding of Polygons and Terrains

  • Pradeesha AshokEmail author
  • Meghana M. Reddy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11458)

Abstract

In this paper, we study the Efficient Guarding problem - a variant of the well studied Art Gallery Problem in computational geometry. A given polygon P is considered to be guarded efficiently by a guard set G if every point in P is seen by exactly one guard in G. Here we investigate the problem of efficient guarding of all the vertices of a polygon using a vertex guard set of minimum size. We prove that it is NP-complete even to check whether an efficient guard set exists for a polygon. We then give a parameterized algorithm for the efficient guarding of a 1.5 dimensional terrain, when parameterized by a structural parameter namely, the onion peeling number of the terrain i.e, the number of convex layers of the terrain. We further give polynomial time algorithms to solve the minimum efficient guarding problem for some special polygons.

Keywords

Art Gallery Problem Efficient Guarding FPT algorithms 

References

  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi, M.: Exact algorithms for terrain guarding. ACM Trans. Algorithms (TALG) 14(2), 25 (2018)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bange, D.W., Barkauskas, A.E., Slater, P.J.: Efficient dominating sets in graphs. Appl. Discrete Math. 189, 189–199 (1988)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bärtschi, A., Ghosh, S.K., Mihalák, M., Tschager, T., Widmayer, P.: Improved bounds for the conflict-free chromatic art gallery problem. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 144. ACM (2014)Google Scholar
  5. 5.
    Bärtschi, A., Suri, S.: Conflict-free chromatic art gallery coverage. Algorithmica 68(1), 265–283 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Biggs, N.: Perfect codes in graphs. J. Comb. Theory Ser. B 15(3), 289–296 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bonnet, E., Miltzow, T.: Parameterized hardness of art gallery problems. In: 24th Annual European Symposium on Algorithms, ESA 2016, Aarhus, Denmark, 22–24 August 2016, pp. 19:1–19:17 (2016)Google Scholar
  8. 8.
    Chang, G.J., Pandu Rangan, C., Coorg, S.R.: Weighted independent perfect domination on cocomparability graphs. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 506–514. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57568-5_282CrossRefGoogle Scholar
  9. 9.
    Chvatal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18(1), 39–41 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cygan, M., et al.: Parameterized Algorithms, vol. 3. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3CrossRefzbMATHGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (2012)zbMATHGoogle Scholar
  12. 12.
    Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability of some art gallery problems. In: CCCG, pp. 64–65 (1998)Google Scholar
  13. 13.
    Erickson, L.H., LaValle, S.M.: An art gallery approach to ensuring that landmarks are distinguishable. In: Robotics: Science and Systems, vol. 7, pp. 81–88 (2012)Google Scholar
  14. 14.
    Everett, H., Corneil, D.G.: Recognizing visibility graphs of spiral polygons. J. Algorithms 11(1), 1–26 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fekete, S.P., Friedrichs, S., Hemmer, M.: Complexity of the general chromatic art gallery problem. arXiv preprint arXiv:1403.2972 (2014)
  16. 16.
    Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  17. 17.
    Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158(6), 718–722 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. Comput. Geom. 47(1), 61–74 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Khodakarami, F., Didehvar, F., Mohades, A.: A fixed-parameter algorithm for guarding 1.5D terrains. Theor. Comput. Sci. 595, 130–142 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Khodakarami, F., Didehvar, F., Mohades, A.: 1.5D terrain guarding problem parameterized by guard range. Theor. Comput. Sci. 661, 65–69 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    King, J., Kirkpatrick, D.: Improved approximation for guarding simple galleries from the perimeter. Discrete Comput. Geom. 46(2), 252–269 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    King, J., Krohn, E.: Terrain guarding is NP-hard. SIAM J. Comput. 40(5), 1316–1339 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Krohn, E., Nilsson, B.J.: The complexity of guarding monotone polygons (2012)Google Scholar
  24. 24.
    Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liang, Y.D., Lu, C.L., Tang, C.Y.: Efficient domination on permutation graphs and trapezoid graphs. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 232–241. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0045090CrossRefGoogle Scholar
  26. 26.
    Lu, C.L., Tang, C.Y.: Weighted efficient domination problem on some perfect graphs. Discrete Appl. Math. 117(1–3), 163–182 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM (JACM) 55(2), 11 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  30. 30.
    Schuchardt, D., Hecker, H.-D.: Two NP-hard art-gallery problems for ortho-polygons. Math. Logic Q. 41(2), 261–267 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.International Institute of Information Technology BangaloreBengaluruIndia

Personalised recommendations