Advertisement

Schwarzschild Spacetime Under Generalised Gullstrand–Painlevé Slicing

  • Colin MacLaurinEmail author
Chapter
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

We investigate a foliation of Schwarzschild spacetime determined by observers freely falling in the radial direction. This is described using a generalisation of Gullstrand–Painlevé coordinates which allows for any possible radial velocity. This foliation provides a contrast with the usual static foliation implied by Schwarzschild coordinates. The 3-dimensional spaces are distinct for the static and falling observers, so the embedding diagrams, spatial measurement, simultaneity, and time at infinity are also distinct, though the 4-dimensional spacetime is unchanged. Our motivation is conceptual understanding, to counter Newton-like viewpoints. In future work, this alternate foliation may shed light on open questions regarding quantum fields, analogue gravity, entropy, energy, and other quantities. This article is aimed at experienced relativists, whereas a forthcoming series is intended for a general audience of physicists, mathematicians, and philosophers.

Keywords

Gullstrand–Painlevé Falling observer Coordinates 

References

  1. 1.
    F. Belgiorno, S. Cacciatori, D. Faccio, Hawking Radiation: from Astrophysical Black Holes to Analogous Systems in Lab (World Scientific, Singapore, 2018)CrossRefzbMATHGoogle Scholar
  2. 2.
    D. Bini, A. Geralico, R.T. Jantzen, Gen. Relativ. Gravit. 44, 603 (2012)CrossRefADSGoogle Scholar
  3. 3.
    D. Bini, L. Lusanna, B. Mashhoon, Int. J. Mod. Phys. D 14, 1413 (2005)CrossRefADSGoogle Scholar
  4. 4.
    H.R. Brown, Physical relativity. Space-time structure from a dynamical perspective (Oxford University Press, Oxford, 2005)Google Scholar
  5. 5.
    B. Carter, in Black Holes (Les Astres Occlus), ed. by C. DeWitt, B.S. DeWitt (Gordon & Breach Science, New York, 1973), pp. 57–214Google Scholar
  6. 6.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Springer, Dordrecht, 1983)zbMATHGoogle Scholar
  7. 7.
    F. de Felice, D. Bini, Classical Measurements in Curved Space-Times (Cambridge University Press, Cambridge, 2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    F. de Felice, C.J.S. Clarke, Relativity on Curved Manifolds. (Cambridge University Press, Cambridge, 1990)Google Scholar
  9. 9.
    J. Ehlers, Gen. Relativ. Gravit. 25, 1225 (1993)CrossRefADSGoogle Scholar
  10. 10.
    J. Eisenstaedt, Einstein and the History of General Relativity, ed. by D. Howard, J. Stachel (1989), pp. 277–292Google Scholar
  11. 11.
    G.F.R. Ellis, R. Maartens, M.A.H. MacCallum Relativistic Cosmology (Cambridge University Press, Cambridge, 2012)Google Scholar
  12. 12.
    F. Estabrook, H. Wahlquist, S. Christensen, B. Dewitt, L. Smarr, E. Tsiang, Phys. Rev. D 7, 2814 (1973)CrossRefADSGoogle Scholar
  13. 13.
    T.K. Finch, Gen. Relativ. Gravit. 47, 56 ( 2015)CrossRefADSGoogle Scholar
  14. 14.
    L. Flamm, Gen. Relativ. Gravit. 47, 72 (2015)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    V.P. Frolov, I.D. Novikov, Black Hole Physics : Basic Concepts and New Developments (Springer, Berlin, 1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    R. Gautreau, B. Hoffmann, Phys. Rev. D 17, 2552 (1978)CrossRefADSGoogle Scholar
  17. 17.
    E. Gourgoulhon, 3+1 Formalism in General Relativity (Springer, Berlin, 2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Gullstrand, Allgemeine lösung des statischen einkörperproblems in der Einsteinschen gravitationstheorie (Almqvist & Wiksell, Stockholm, 1922)zbMATHGoogle Scholar
  19. 19.
    Y. Hagihara, Celestial Mechanics. Vol. 1: Dynamical Principles and Transformation Theory (MIT Press, London, 1970)Google Scholar
  20. 20.
    A.J.S. Hamilton, General Relativity, Black Holes, and Cosmology (Oxford University Press, Oxford, 2015)Google Scholar
  21. 21.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)CrossRefADSGoogle Scholar
  22. 22.
    M.P. Hobson, G.P. Efstathiou, A.N. Lasenby, General Relativity (Cambridge University Press, Cambridge, 2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Hoboken, 2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    P. Kraus, F. Wilczek, Some applications of a simple stationary line element for the Schwarzschild geometry. Mod. Phys. Lett. A 9(40), 3713–3719 (1994)CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    L. Landau, E. Lifshitz, Field Theory (GITTL, Moscow, 1941)Google Scholar
  26. 26.
    G. Lemaître, Publication du Laboratoire d’Astronomie et de Géodésie de l’Université de Louvain 9, 171–205 (1932)ADSGoogle Scholar
  27. 27.
    S. Liberati, G. Tricella, M. Visser, Class. Quantum Grav. 35, 155004 (2018)CrossRefADSGoogle Scholar
  28. 28.
    H.-C. Lin, C. Soo, Gen. Relativ. Gravit. 45, 79 (2013)CrossRefADSGoogle Scholar
  29. 29.
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius, J. Uglum, Phys. Rev. D 52, 6997 (1995)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    C. MacLaurin (2018), Mimicking a black hole in flat spacetime. ColinsCosmos.com
  31. 31.
    D.B. Malament, Philosophy of Physics. Part A. Handbook of the Philosophy of Science (Elsevier, Amsterdam, 2006), pp. 229Google Scholar
  32. 32.
    D. Marolf, Gen. Relativ. Gravit. 31, 919 (1999)CrossRefADSGoogle Scholar
  33. 33.
    K. Martel, E. Poisson, Am. J. Phys. 69, 476 (2001)CrossRefADSGoogle Scholar
  34. 34.
    S.D. Mathur, What exactly is the information paradox?, in Physics of Black Holes, vol. 3 (Springer, Berlin, 2009)Google Scholar
  35. 35.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman and Co., New York, 1973)Google Scholar
  36. 36.
    T. Moore, A General Relativity Workbook (University Science Books, Sausalito, 2012)Google Scholar
  37. 37.
    T. Mueller, F. Grave, Catalogue of spacetimes (2010). arXiv: 0904.4184Google Scholar
  38. 38.
    B. O’Neill, The Geometry of Kerr Black Holes (Courier Corporation, North Chelmsford, 1995)zbMATHGoogle Scholar
  39. 39.
    P. Painlevé, CR Acad. Sci. Paris (serie non specifiee) 173, 677 (1921)Google Scholar
  40. 40.
    M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    E. Poisson, A relativist’s toolkit : the mathematics of black-hole mechanics (Cambridge University Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar
  42. 42.
    W. Rindler, Essential Relativity. Special, General, and Cosmological. (Springer, Berlin, 1977)Google Scholar
  43. 43.
    W. Rindler, Relativity: Special, General and Cosmological, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar
  44. 44.
    K. Rosquist, Gen. Relativ. Gravit. 41, 2619 (2009)CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    R.K. Sachs, H.-H. Wu, General Relativity for Mathematicians (Springer, New York, 1977), pp. 52–59CrossRefzbMATHGoogle Scholar
  46. 46.
    R.E. Scherr, P.S. Shaffer, S. Vokos, Am. J. Phys. 70, 1238 (2002)CrossRefADSGoogle Scholar
  47. 47.
    B. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 2009)CrossRefzbMATHGoogle Scholar
  48. 48.
    J.M.M. Senovilla, Gen. Relativ. Gravit. 39, 685 (2007)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    L. Smarr, J.W. York, Phys. Rev. D 17, 2529 (1978)CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    M.H. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Berlin, 1989)CrossRefGoogle Scholar
  51. 51.
    J.L. Synge, Proc. Lond. Math. Soc. 2 43, 376 (1937)Google Scholar
  52. 52.
    J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)zbMATHGoogle Scholar
  53. 53.
    E.F. Taylor, J.A. Wheeler, Exploring Black Holes: Introduction to General Relativity (Pearson, London, 2000)Google Scholar
  54. 54.
    C. Vilain, Studies in the History of General Relativity3, 419 (1992)MathSciNetGoogle Scholar
  55. 55.
    R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)CrossRefzbMATHGoogle Scholar
  56. 56.
    R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of QueenslandBrisbaneAustralia

Personalised recommendations