Schwarzschild Spacetime Under Generalised Gullstrand–Painlevé Slicing
Abstract
We investigate a foliation of Schwarzschild spacetime determined by observers freely falling in the radial direction. This is described using a generalisation of Gullstrand–Painlevé coordinates which allows for any possible radial velocity. This foliation provides a contrast with the usual static foliation implied by Schwarzschild coordinates. The 3-dimensional spaces are distinct for the static and falling observers, so the embedding diagrams, spatial measurement, simultaneity, and time at infinity are also distinct, though the 4-dimensional spacetime is unchanged. Our motivation is conceptual understanding, to counter Newton-like viewpoints. In future work, this alternate foliation may shed light on open questions regarding quantum fields, analogue gravity, entropy, energy, and other quantities. This article is aimed at experienced relativists, whereas a forthcoming series is intended for a general audience of physicists, mathematicians, and philosophers.
Keywords
Gullstrand–Painlevé Falling observer CoordinatesReferences
- 1.F. Belgiorno, S. Cacciatori, D. Faccio, Hawking Radiation: from Astrophysical Black Holes to Analogous Systems in Lab (World Scientific, Singapore, 2018)CrossRefzbMATHGoogle Scholar
- 2.D. Bini, A. Geralico, R.T. Jantzen, Gen. Relativ. Gravit. 44, 603 (2012)CrossRefADSGoogle Scholar
- 3.D. Bini, L. Lusanna, B. Mashhoon, Int. J. Mod. Phys. D 14, 1413 (2005)CrossRefADSGoogle Scholar
- 4.H.R. Brown, Physical relativity. Space-time structure from a dynamical perspective (Oxford University Press, Oxford, 2005)Google Scholar
- 5.B. Carter, in Black Holes (Les Astres Occlus), ed. by C. DeWitt, B.S. DeWitt (Gordon & Breach Science, New York, 1973), pp. 57–214Google Scholar
- 6.S. Chandrasekhar, The Mathematical Theory of Black Holes (Springer, Dordrecht, 1983)zbMATHGoogle Scholar
- 7.F. de Felice, D. Bini, Classical Measurements in Curved Space-Times (Cambridge University Press, Cambridge, 2010)CrossRefzbMATHGoogle Scholar
- 8.F. de Felice, C.J.S. Clarke, Relativity on Curved Manifolds. (Cambridge University Press, Cambridge, 1990)Google Scholar
- 9.J. Ehlers, Gen. Relativ. Gravit. 25, 1225 (1993)CrossRefADSGoogle Scholar
- 10.J. Eisenstaedt, Einstein and the History of General Relativity, ed. by D. Howard, J. Stachel (1989), pp. 277–292Google Scholar
- 11.G.F.R. Ellis, R. Maartens, M.A.H. MacCallum Relativistic Cosmology (Cambridge University Press, Cambridge, 2012)Google Scholar
- 12.F. Estabrook, H. Wahlquist, S. Christensen, B. Dewitt, L. Smarr, E. Tsiang, Phys. Rev. D 7, 2814 (1973)CrossRefADSGoogle Scholar
- 13.T.K. Finch, Gen. Relativ. Gravit. 47, 56 ( 2015)CrossRefADSGoogle Scholar
- 14.L. Flamm, Gen. Relativ. Gravit. 47, 72 (2015)CrossRefADSMathSciNetGoogle Scholar
- 15.V.P. Frolov, I.D. Novikov, Black Hole Physics : Basic Concepts and New Developments (Springer, Berlin, 1998)CrossRefzbMATHGoogle Scholar
- 16.R. Gautreau, B. Hoffmann, Phys. Rev. D 17, 2552 (1978)CrossRefADSGoogle Scholar
- 17.E. Gourgoulhon, 3+1 Formalism in General Relativity (Springer, Berlin, 2012)CrossRefzbMATHGoogle Scholar
- 18.A. Gullstrand, Allgemeine lösung des statischen einkörperproblems in der Einsteinschen gravitationstheorie (Almqvist & Wiksell, Stockholm, 1922)zbMATHGoogle Scholar
- 19.Y. Hagihara, Celestial Mechanics. Vol. 1: Dynamical Principles and Transformation Theory (MIT Press, London, 1970)Google Scholar
- 20.A.J.S. Hamilton, General Relativity, Black Holes, and Cosmology (Oxford University Press, Oxford, 2015)Google Scholar
- 21.S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)CrossRefADSGoogle Scholar
- 22.M.P. Hobson, G.P. Efstathiou, A.N. Lasenby, General Relativity (Cambridge University Press, Cambridge, 2006)CrossRefzbMATHGoogle Scholar
- 23.S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Hoboken, 2011)CrossRefzbMATHGoogle Scholar
- 24.P. Kraus, F. Wilczek, Some applications of a simple stationary line element for the Schwarzschild geometry. Mod. Phys. Lett. A 9(40), 3713–3719 (1994)CrossRefADSMathSciNetzbMATHGoogle Scholar
- 25.L. Landau, E. Lifshitz, Field Theory (GITTL, Moscow, 1941)Google Scholar
- 26.G. Lemaître, Publication du Laboratoire d’Astronomie et de Géodésie de l’Université de Louvain 9, 171–205 (1932)ADSGoogle Scholar
- 27.S. Liberati, G. Tricella, M. Visser, Class. Quantum Grav. 35, 155004 (2018)CrossRefADSGoogle Scholar
- 28.H.-C. Lin, C. Soo, Gen. Relativ. Gravit. 45, 79 (2013)CrossRefADSGoogle Scholar
- 29.D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius, J. Uglum, Phys. Rev. D 52, 6997 (1995)CrossRefADSMathSciNetGoogle Scholar
- 30.C. MacLaurin (2018), Mimicking a black hole in flat spacetime. ColinsCosmos.com
- 31.D.B. Malament, Philosophy of Physics. Part A. Handbook of the Philosophy of Science (Elsevier, Amsterdam, 2006), pp. 229Google Scholar
- 32.D. Marolf, Gen. Relativ. Gravit. 31, 919 (1999)CrossRefADSGoogle Scholar
- 33.K. Martel, E. Poisson, Am. J. Phys. 69, 476 (2001)CrossRefADSGoogle Scholar
- 34.S.D. Mathur, What exactly is the information paradox?, in Physics of Black Holes, vol. 3 (Springer, Berlin, 2009)Google Scholar
- 35.C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman and Co., New York, 1973)Google Scholar
- 36.T. Moore, A General Relativity Workbook (University Science Books, Sausalito, 2012)Google Scholar
- 37.T. Mueller, F. Grave, Catalogue of spacetimes (2010). arXiv: 0904.4184Google Scholar
- 38.B. O’Neill, The Geometry of Kerr Black Holes (Courier Corporation, North Chelmsford, 1995)zbMATHGoogle Scholar
- 39.P. Painlevé, CR Acad. Sci. Paris (serie non specifiee) 173, 677 (1921)Google Scholar
- 40.M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)CrossRefADSMathSciNetGoogle Scholar
- 41.E. Poisson, A relativist’s toolkit : the mathematics of black-hole mechanics (Cambridge University Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar
- 42.W. Rindler, Essential Relativity. Special, General, and Cosmological. (Springer, Berlin, 1977)Google Scholar
- 43.W. Rindler, Relativity: Special, General and Cosmological, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar
- 44.K. Rosquist, Gen. Relativ. Gravit. 41, 2619 (2009)CrossRefADSMathSciNetGoogle Scholar
- 45.R.K. Sachs, H.-H. Wu, General Relativity for Mathematicians (Springer, New York, 1977), pp. 52–59CrossRefzbMATHGoogle Scholar
- 46.R.E. Scherr, P.S. Shaffer, S. Vokos, Am. J. Phys. 70, 1238 (2002)CrossRefADSGoogle Scholar
- 47.B. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 2009)CrossRefzbMATHGoogle Scholar
- 48.J.M.M. Senovilla, Gen. Relativ. Gravit. 39, 685 (2007)CrossRefADSMathSciNetGoogle Scholar
- 49.L. Smarr, J.W. York, Phys. Rev. D 17, 2529 (1978)CrossRefADSMathSciNetGoogle Scholar
- 50.M.H. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Berlin, 1989)CrossRefGoogle Scholar
- 51.J.L. Synge, Proc. Lond. Math. Soc. 2 43, 376 (1937)Google Scholar
- 52.J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)zbMATHGoogle Scholar
- 53.E.F. Taylor, J.A. Wheeler, Exploring Black Holes: Introduction to General Relativity (Pearson, London, 2000)Google Scholar
- 54.C. Vilain, Studies in the History of General Relativity3, 419 (1992)MathSciNetGoogle Scholar
- 55.R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)CrossRefzbMATHGoogle Scholar
- 56.R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994)zbMATHGoogle Scholar