Advertisement

Abstract

I give a synthetic review of the physics involved in the direct detection of gravitational waves, both from the point of view of what can be learned and what is needed to obtain and interpret the measurements.

Keywords

Gravitational waves Detectors 

Notes

Acknowledgement

I would like to thank the organizers of the Domoschool 2018 for inviting me, and the editors of this book for their patience in waiting for my contribution.

References

  1. 1.
    A. Einstein, Die Grundlagen der Allgemeinene Relativitätstheorie (The foundations of the theory of general relativity). Ann. Phys. (1900) (series 4) 354(7), 769–822 (1916). ISSN 0003-3804.  https://doi.org/10.1002/andp.19163540702 ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation (Approximate integration of the field equations of gravitation), in Ständiger Beobachter der Preussischen Akademie der Wissenschaften: Part 1 (1916), pp. 688–696Google Scholar
  3. 3.
    A. Einstein, Über Gravitationswellen (On gravitational waves), in Ständiger Beobachter der Preussischen Akademie der Wissenschaften, Part 1 (1918), pp. 154–167Google Scholar
  4. 4.
    A. Einstein, N. Rosen, On gravitational waves. J. Frankl. Inst. 223(1), 43–54 (1937). ISSN 0016-0032 (print), 1879–2693 (electronic). https://doi.org/10.1016/S0016-0032(37)90583-0 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016).  https://doi.org/10.1103/PhysRevLett.116.241102 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017).  https://doi.org/10.1103/PhysRevLett.119.141101 ADSCrossRefGoogle Scholar
  8. 8.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).  https://doi.org/10.1103/PhysRevLett.119.161101 ADSCrossRefGoogle Scholar
  9. 9.
    J. Weber, Gravitational-wave-detector events. Phys. Rev. Lett. 20(23), 1307 (1968).  https://doi.org/10.1103/PhysRevLett.20.1307 ADSCrossRefGoogle Scholar
  10. 10.
    J. Weber, Gravitational radiation from the pulsars. Phys. Rev. Lett. 21, 395–396 (1968).  https://doi.org/10.1103/PhysRevLett.21.395 ADSCrossRefGoogle Scholar
  11. 11.
    J. Weber, Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22, 1320–1324 (1969).  https://doi.org/10.1103/PhysRevLett.22.1320 ADSCrossRefGoogle Scholar
  12. 12.
    M.E. Gertsenshtein, V.I. Pustovoit, On the detection of low frequency gravitational waves. Sov. Phys. JETP 16, 433 (1962).ADSGoogle Scholar
  13. 13.
    R.L. Forward, Wide band laser interferometer gravitational radiation experiment. Phys. Rev. D17, 379–390 (1978).  https://doi.org/10.1103/PhysRevD.17.379 ADSGoogle Scholar
  14. 14.
    R. Weiss, Electronically Coupled Broadband Gravitational Antenna. Quarterly Progress Report (Research Laboratory of Electronics (MIT), Cambridge, 1972), p. 105Google Scholar
  15. 15.
    J. Aasi et al., Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001 ADSCrossRefGoogle Scholar
  16. 16.
    F Acernese, M Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, et al., Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Gravity 32(2), 024001 (2015)Google Scholar
  17. 17.
    C.S. Unnikrishnan, Indigo and LIGO-India: scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 22(1), 1341010 (2013). https://doi.org/10.1142/S0218271813410101 ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Weisberg, J.H. Taylor, Relativistic binary pulsar B1913+ 16: thirty years of observations and analysis. ASP Conf. Ser. 328, 25 (2005)ADSGoogle Scholar
  19. 19.
    R.A. Hulse, J.H. Taylor, A High-sensitivity pulsar survey. Astrophys. J. 191, L59 (1974). https://doi.org/10.1086/181548 ADSCrossRefGoogle Scholar
  20. 20.
    J.H. Taylor, J.M. Weisberg, Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+ 16. Astrophys. J. 345, 434–450 (1989). https://doi.org/10.1086/167917 ADSCrossRefGoogle Scholar
  21. 21.
    M. Maggiore Gravitational Waves (Oxford University Press, Oxford, 2007). ISBN 9780198570745Google Scholar
  22. 22.
    T. Accadia et al., The seismic Superattenuators of the Virgo gravitational waves interferometer. Low Freq. Noise Vibrat. Act. Control 30(1), 63–79 (2011) https://doi.org/10.1260/0263-0923.30.1.63 CrossRefGoogle Scholar
  23. 23.
    T. Akutsu et al., KAGRA: 2.5 generation interferometric gravitational wave detector. Nat. Astron. 3(1), 35–40 (2019). https://doi.org/10.1038/s41550-018-0658-y
  24. 24.
    M. Punturo et al., The third generation of gravitational wave observatories and their science reach. Classical Quantum Gravity 27, 084007 (2010). https://doi.org/10.1088/0264-9381/27/8/084007 ADSCrossRefGoogle Scholar
  25. 25.
    S. Hild, S. Chelkowski, A. Freise, J. Franc, N. Morgado, R. Flaminio, R. DeSalvo, A xylophone configuration for a third generation gravitational wave detector. Classical Quantum Gravity 27, 015003 (2010). https://doi.org/10.1088/0264-9381/27/1/015003 ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    C.M. Caves, quantum mechanical noise in an interferometer. Phys. Rev. D23, 1693–1708 (1981).  https://doi.org/10.1103/PhysRevD.23.1693 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A.M. Steinberg, M.W. Mitchell, J.S. Lundeen, Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    J.G. Rarity, P.R. Tapster, E. Jakeman, T. Larchuk, R.A. Campos, M.C. Teich, B.E.A. Saleh, Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990).  https://doi.org/10.1103/PhysRevLett.65.1348 ADSCrossRefGoogle Scholar
  29. 29.
    R. Demkowicz-Dobrzanski, K. Banaszek, R. Schnabel, Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600. Phys. Rev. A88(4), 041802 (2013).  https://doi.org/10.1103/PhysRevA.88.041802
  30. 30.
    H.P. Yuen, Contractive states and the standard quantum limit for monitoring free-mass positions. Phys. Rev. Lett. 51, 719–722 (1983).  https://doi.org/10.1103/PhysRevLett.51.719 ADSCrossRefGoogle Scholar
  31. 31.
    M.T. Jaekel, S. Reynaud, Quantum limits in interferometric measurements. Europhys. Lett. 13(4), 301–306 (1990). https://doi.org/10.1209/0295-5075/13/4/003 ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001).  https://doi.org/10.1103/PhysRevD.65.022002 ADSCrossRefGoogle Scholar
  33. 33.
    H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008).  https://doi.org/10.1103/PhysRevLett.100.013601 ADSCrossRefGoogle Scholar
  34. 34.
    T.P. Purdy, R.W. Peterson, C.A. Regal, Observation of radiation pressure shot noise on a macroscopic object. Science 339(6121), 801–804 (2013). ISSN 0036-8075.  https://doi.org/10.1126/science.1231282 ADSCrossRefGoogle Scholar
  35. 35.
    A.H. Safavi Naeini et al., Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010).  https://doi.org/10.1103/PhysRevLett.104.251102 ADSCrossRefGoogle Scholar
  37. 37.
    A. Buonanno, Y. Chen, Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys. Rev. D 65, 042001 (2002).  https://doi.org/10.1103/PhysRevD.65.042001 ADSCrossRefGoogle Scholar
  38. 38.
    B.S. Sheard, M.B. Gray, C.M. Mow-Lowry, D.E. McClelland, S.E. Whitcomb, Observation and characterization of an optical spring. Phys. Rev. A 69, 051801 (2004).  https://doi.org/10.1103/PhysRevA.69.051801 ADSCrossRefGoogle Scholar
  39. 39.
    T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007).  https://doi.org/10.1103/PhysRevLett.99.160801
  40. 40.
    V.B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Parametric oscillatory instability in Fabry–Perot interferometer. Phys. Lett. A 287(5), 331–338 (2001). ISSN 0375-9601. https://doi.org/10.1016/S0375-9601(01)00510-2 ADSCrossRefGoogle Scholar
  41. 41.
    S.A. Hughes, K.S. Thorne, Seismic gravity gradient noise in interferometric gravitational wave detectors. Phys. Rev. D58, 122002 (1998).  https://doi.org/10.1103/PhysRevD.58.122002 ADSGoogle Scholar
  42. 42.
    M. Beccaria et al., Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity. Classical Quantum Gravity 15, 3339–3362 (1998). https://doi.org/10.1088/0264-9381/15/11/004 ADSGoogle Scholar
  43. 43.
    M.G. Beker et al., Improving the sensitivity of future GW observatories in the 1-Hz to 10-Hz band: Newtonian and seismic noise. Gen. Relativ. Gravit. 43, 623–656 (2011). https://doi.org/10.1007/s10714-010-1011-7 ADSCrossRefGoogle Scholar
  44. 44.
    M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory. Classical Quantum Gravity 27, 194002 (2010). https://doi.org/10.1088/0264-9381/27/19/194002 ADSCrossRefGoogle Scholar
  45. 45.
    G. Cella, Off-line subtraction of seismic Newtonian noise, in Recent Developments in General Relativity. Proceedings of the 13th Italian Conference on General Relativity and Gravitational Physics (Springer, Milano, 1998), pp. 495–503CrossRefGoogle Scholar
  46. 46.
    J.C. Driggers, J. Harms, R.X. Adhikari, Subtraction of Newtonian noise using optimized sensor arrays. Phys. Rev. D86, 102001 (2012).  https://doi.org/10.1103/PhysRevD.86.102001 ADSGoogle Scholar
  47. 47.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA. Living Rev. Relativ. 21(1), 3 (2018). ISSN 1433-8351. https://doi.org/10.1007/s41114-018-0012-9
  48. 48.
    B.P. Abbott et al., GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016).  https://doi.org/10.1103/PhysRevLett.116.241103
  49. 49.
    B.P. Abbott et al., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs (2018). arXiv:1811.12907Google Scholar
  50. 50.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys. Rev. X 6, 041014 (2016).  https://doi.org/10.1103/PhysRevX.6.041014 Google Scholar
  51. 51.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016).  https://doi.org/10.1103/PhysRevLett.116.221101 ADSCrossRefGoogle Scholar
  52. 52.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a. Astrophys. J. 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c ADSCrossRefGoogle Scholar
  53. 53.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).  https://doi.org/10.1103/PhysRevLett.121.161101 ADSCrossRefGoogle Scholar
  54. 54.
    M. Fishbach, R. Gray, I. Magaña Hernandez, H. Qi, A. Sur, A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart. Astrophys. J. Lett. 871(1), L13 (2019)Google Scholar
  55. 55.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9 ADSCrossRefGoogle Scholar
  56. 56.
    D.I. Jones, Gravitational waves from rotating strained neutron stars. Classical Quantum Gravity 19(7), 1255–1265 (2002). https://doi.org/10.1088/0264-9381/19/7/304 ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    C. Caprini, Stochastic background of gravitational waves from cosmological sources. J. Phys. Conf. Ser. 610(1), 012004 (2015). https://doi.org/10.1088/1742-6596/610/1/012004 Google Scholar
  58. 58.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced Virgo. Living Rev. Relativ. 19(1), 1 (2016). ISSN 1433-8351.  https://doi.org/10.1007/lrr-2016-1
  59. 59.
    M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, et al., The Einstein telescope: a third-generation gravitational wave observatory. Classical Quantum Gravity 27(19), 194002 (2010)Google Scholar
  60. 60.
    M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rep. 331(6), 283–367 (2000). ISSN 0370-1573. https://doi.org/10.1016/S0370-1573(99)00102-7 ADSCrossRefGoogle Scholar
  61. 61.
    I. Sendra, T.L. Smith, Improved limits on short-wavelength gravitational waves from the cosmic microwave background. Phys. Rev. D 85, 123002 (2012).  https://doi.org/10.1103/PhysRevD.85.123002 ADSCrossRefGoogle Scholar
  62. 62.
    Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S.J. Chamberlin, S. Chatterjee, B. Christy, J.M. Cordes, N.J. Cornish, K. Crowter, et al., The NANOGrav nine-year data set: Limits on the isotropic stochastic gravitational wave background. Astrophys. J. 821(1), 13 (2016).ADSCrossRefGoogle Scholar
  63. 63.
    M.S. Turner, Detectability of inflation-produced gravitational waves. Phys. Rev. D 55, R435–R439 (1997).  https://doi.org/10.1103/PhysRevD.55.R435 ADSCrossRefGoogle Scholar
  64. 64.
    V. Mandic, A. Buonanno, Accessibility of the pre-big-bang models to LIGO. Phys. Rev. D 73, 063008 (2006).  https://doi.org/10.1103/PhysRevD.73.063008 ADSCrossRefGoogle Scholar
  65. 65.
    N. Barnaby, E. Pajer, M. Peloso, Gauge field production in axion inflation: consequences for monodromy, non-Gaussianity in the CMB, and gravitational waves at interferometers. Phys. Rev. D 85, 023525 (2012).  https://doi.org/10.1103/PhysRevD.85.023525 ADSCrossRefGoogle Scholar
  66. 66.
    X. Siemens, V. Mandic, J. Creighton, Gravitational-wave stochastic background from cosmic strings. Phys. Rev. Lett. 98, 111101 (2007).  https://doi.org/10.1103/PhysRevLett.98.111101 ADSCrossRefGoogle Scholar
  67. 67.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Upper limits on the stochastic gravitational-wave background from advanced LIGO’s first observing run. Phys. Rev. Lett. 118, 121101 (2017).  https://doi.org/10.1103/PhysRevLett.118.121101 ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    P.D. Lasky et al., Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X6(1), 011035 (2016).  https://doi.org/10.1103/PhysRevX.6.011035
  69. 69.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., GW150914: implications for the stochastic gravitational-wave background from binary black holes. Phys. Rev. Lett. 116, 131102 (2016).  https://doi.org/10.1103/PhysRevLett.116.131102 ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    T. Regimbau, The astrophysical gravitational wave stochastic background. Res. Astron. Astrophys. 11(4), 369 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    J. Aasi, B.P. Abbott, R. Abbott, T. Abbott, M.R. Abernathy, T. Accadia, F. Acernese, K. Ackley, C. Adams, et al., Improved upper limits on the stochastic gravitational-wave background from 2009–2010 LIGO and Virgo data. Phys. Rev. Lett. 113, 231101 (2014).  https://doi.org/10.1103/PhysRevLett.113.231101
  72. 72.
    A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, M.-A. Sakagami, Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys. Rev. D 79, 082002 (2009).  https://doi.org/10.1103/PhysRevD.79.082002 ADSCrossRefGoogle Scholar
  73. 73.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background. Phys. Rev. Lett. 120, 201102 (2018).  https://doi.org/10.1103/PhysRevLett.120.201102 ADSCrossRefGoogle Scholar
  74. 74.
    J. Abadie, B.P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, et al., Directional limits on persistent gravitational waves using LIGO S5 science data. Phys. Rev. Lett. 107, 271102 (2011).  https://doi.org/10.1103/PhysRevLett.107.271102 CrossRefGoogle Scholar
  75. 75.
    S. Drasco, É.É. Flanagan, Detection methods for non-Gaussian gravitational wave stochastic backgrounds. Phys. Rev. D 67:082003 (2003).  https://doi.org/10.1103/PhysRevD.67.082003 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INFN Sez. PisaPisaItaly

Personalised recommendations