Lectures on Linear Stability of Rotating Black Holes

  • Felix FinsterEmail author
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)


These lecture notes are concerned with linear stability of the non-extreme Kerr geometry under perturbations of general spin. After a brief review of the Kerr black hole and its symmetries, we describe these symmetries by Killing fields and work out the connection to conservation laws. The Penrose process and superradiance effects are discussed. Decay results on the long-time behavior of Dirac waves are outlined. It is explained schematically how the Maxwell equations and the equations for linearized gravitational waves can be decoupled to obtain the Teukolsky equation. It is shown how the Teukolsky equation can be fully separated to a system of coupled ordinary differential equations. Linear stability of the non-extreme Kerr black hole is stated as a pointwise decay result for solutions of the Cauchy problem for the Teukolsky equation. The stability proof is outlined, with an emphasis on the underlying ideas and methods.


Black holes Linear stability Kerr geometry Gravitational waves Linear hyperbolic PDEs Teukolsky Equation 

Mathematics Subject Classification (2000)

Primary 83C57 83C35; Secondary 58J45 83C20 83C60 35Q75 35L15 35L52 



I would like to thank the organizers of the first “Domoschool—International Alpine School of Mathematics and Physics” held in Domodossola, 16–20 July 2018, for the kind invitation. This article is based on my lectures delivered at this summer school. I am grateful to Niky Kamran and Igor Khavkine for helpful comments on the manuscript.


  1. 1.
    R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity (McGraw-Hill Book, New York, 1965)zbMATHGoogle Scholar
  2. 2.
    L. Andersson, P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. J. Hyperbolic Differ. Equ. 12(4), 689–743 (2015). arXiv:1310.2664 [math.AP]Google Scholar
  3. 3.
    L. Andersson, T. Bäckdahl, P. Blue, A new tensorial conservation law for Maxwell fields on the Kerr background. J. Differ. Geom. 105(2), 163–176 (2017). arXiv:1412.2960 [gr-qc]Google Scholar
  4. 4.
    L. Andersson, S. Ma, C. Paganini, B.F. Whiting, Mode stability on the real axis. J. Math. Phys. 58(7), 072501, 19pp. (2017). arXiv:1607.02759 [gr-qc]Google Scholar
  5. 5.
    V. Cardoso, Ó.J.C. Dias, J.P.S. Lemos, S. Yoshida, Black-hole bomb and superradiant instabilities. Phys. Rev. D 70(4), 044039, 9pp. (2004). hep-th/0404096Google Scholar
  6. 6.
    B. Carter, Republication of: black hole equilibrium states. Part I. Analytic and geometric properties of the Kerr solutions. Gen. Relativ. Gravit. 41(12), 2873–2938 (2009)zbMATHGoogle Scholar
  7. 7.
    S. Chandrasekhar, The Mathematical Theory of Black Holes. Oxford Classic Texts in the Physical Sciences (The Clarendon Press/Oxford University Press, New York, 1998)Google Scholar
  8. 8.
    P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Dafermos, G. Holzegel, I. Rodnianski, The linear stability of the Schwarzschild solution to gravitational perturbations (2016). arXiv:1601.06467 [gr-qc]Google Scholar
  10. 10.
    M. Dafermos, G. Holzegel, I. Rodnianski, Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case |a|≪ m (2017). arXiv:1711.07944 [gr-qc]Google Scholar
  11. 11.
    V. de Alfaro, T. Regge, Potential Scattering (North-Holland, Amsterdam, 1965)zbMATHGoogle Scholar
  12. 12.
    F. Finster, Local U(2, 2) symmetry in relativistic quantum mechanics. J. Math. Phys. 39(12), 6276–6290 (1998). arXiv:hep-th/9703083Google Scholar
  13. 13.
    F. Finster, The Continuum Limit of Causal Fermion Systems. Fundamental Theories of Physics, vol. 186 (Springer, Berlin, 2016), arXiv:1605.04742 [math-ph]Google Scholar
  14. 14.
    F. Finster, J. Kleiner, Causal fermion systems as a candidate for a unified physical theory. J. Phys. Conf. Ser. 626, 012020 (2015). arXiv:1502.03587 [math-ph]Google Scholar
  15. 15.
    F. Finster, C. Röken, Self-adjointness of the Dirac Hamiltonian for a class of non-uniformly elliptic boundary value problems. Ann. Math. Sci. Appl. 1(2), 301–320 (2016). arXiv:1512.00761 [math-ph]Google Scholar
  16. 16.
    F. Finster, H. Schmid, Spectral estimates and non-selfadjoint perturbations of spheroidal wave operators. J. Reine Angew. Math. 601, 71–107 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    F. Finster, J. Smoller, A time-independent energy estimate for outgoing scalar waves in the Kerr geometry. J. Hyperbolic Differ. Equ. 5(1), 221–255 (2008). arXiv:0707.2290 [math-ph]Google Scholar
  18. 18.
    F. Finster, J. Smoller, Error estimates for approximate solutions of the Riccati equation with real or complex potentials. Arch. Ration. Mech. Anal. 197(3), 985–1009 (2010). arXiv:0807.4406 [math-ph]Google Scholar
  19. 19.
    F. Finster, J. Smoller, Absence of zeros and asymptotic error estimates for Airy and parabolic cylinder functions. Commun. Math. Sci. 12(1), 175–200 (2014). arXiv:1207.6861 [math.CA]Google Scholar
  20. 20.
    F. Finster, J. Smoller, Refined error estimates for the Riccati equation with applications to the angular Teukolsky equation. Methods Appl. Anal. 22(1), 67–100 (2015). arXiv:1307.6470 [math.CA]Google Scholar
  21. 21.
    F. Finster, J. Smoller, A spectral representation for spin-weighted spheroidal wave operators with complex aspherical parameter. Methods Appl. Anal. 23(1), 35–118 (2016). arXiv:1507.05756 [math-ph]Google Scholar
  22. 22.
    F. Finster, J. Smoller, Linear stability of rotating black holes: outline of the proof, in Nonlinear Analysis in Geometry and Applied Mathematics ed. by L. Bieri, P.T. Chruściel, S.-T. Yau. Harvard University Center of Mathematical Sciences and Applications (CMSA) Series in Mathematics, vol. 1 (International Press, Somerville, 2017), pp. 77–90. arXiv:1609.03171 [math-ph]Google Scholar
  23. 23.
    F. Finster, J. Smoller, Linear stability of the non-extreme Kerr black hole. Adv. Theor. Math. Phys. 21(8), 1991–2085 (2017). arXiv:1606.08005 [math-ph]Google Scholar
  24. 24.
    F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. Commun. Pure Appl. Math. 537, 902–929 (2000). gr-qc/9905047Google Scholar
  25. 25.
    F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry. Commun. Math. Phys. 230(2), 201–244 (2002). arXiv:gr-qc/0107094Google Scholar
  26. 26.
    F. Finster, N. Kamran, J. Smoller, S.-T. Yau, The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry. Adv. Theor. Math. Phys. 7(1), 25–52 (2003). arXiv:gr-qc/0005088Google Scholar
  27. 27.
    F. Finster, N. Kamran, J. Smoller, S.-T. Yau, An integral spectral representation of the propagator for the wave equation in the Kerr geometry. Commun. Math. Phys. 260(2), 257–298 (2005). gr-qc/0310024Google Scholar
  28. 28.
    F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006). gr-qc/0504047Google Scholar
  29. 29.
    F. Finster, N. Kamran, J. Smoller, S.-T. Yau, A rigorous treatment of energy extraction from a rotating black hole. Commun. Math. Phys. 287(3), 829–847 (2009). arXiv:gr-qc/0701018Google Scholar
  30. 30.
    F. Finster, J. Kleiner, J.-H. Treude, An introduction to the fermionic projector and causal fermion systems (in preparation)Google Scholar
  31. 31.
    J.L. Friedman, M.S. Morris, Schwarzschild perturbations die in time. J. Math. Phys. 41(11), 7529–7534 (2000)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Güven, Black holes have no superhair. Phys. Rev. D 22, 2327–2330 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    P. Hintz, A. Vasy, The global non-linear stability of the Kerr–de Sitter family of black holes. Acta Math. 220(1), 1–206 (2018). arXiv:1606.04014 [math.DG]Google Scholar
  34. 34.
    P.-K. Hung, J. Keller, M.-T. Wang, Linear stability of Schwarzschild spacetime: the Cauchy problem of metric coefficients (2017). arXiv:1702.02843 [gr-qc]Google Scholar
  35. 35.
    J. Metcalfe, D. Tataru, M. Tohaneanu, Pointwise decay for the Maxwell field on black hole space–times. Adv. Math. 316, 53–93 (2017). arXiv:1411.3693 [math.AP]Google Scholar
  36. 36.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973)Google Scholar
  37. 37.
    B. O’Neill, The Geometry of Kerr Black Holes (A K Peters, Wellesley, 1995)Google Scholar
  38. 38.
    R. Penrose, Gravitational collapse: The role of general relativity. Rev. del Nuovo Cimento 1, 252–276 (1969)ADSGoogle Scholar
  39. 39.
    W.H. Press, S.A. Teukolsky, Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A.A. Starobinsky, Amplification of waves during reflection from a black hole. Soviet Phys. JETP 37, 28–32 (1973)ADSGoogle Scholar
  42. 42.
    N. Straumann, General Relativity. Graduate Texts in Physics, 2nd edn. (Springer, Dordrecht, 2013)Google Scholar
  43. 43.
    S.A. Teukolsky, Perturbations of a rotating black hole I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J. 185, 635–647 (1973)Google Scholar
  44. 44.
    R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)CrossRefGoogle Scholar
  45. 45.
    B.F. Whiting, Mode stability of the Kerr black hole. J. Math. Phys. 30(6), 1301–1305 (1989)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    B.F. Whiting, L.R. Price, Metric reconstruction from Weyl scalars. Classical Quant. Gravity 22(15), S589–S604 (2005)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Y.B. Zel’dovich, Amplification of cylindrical electromagnetic waves from a rotating body. Soviet Phys. JETP 35, 1085–1087 (1972)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations