A Methodology for Trabecular Bone Microstructure Modelling Agreed with Three-Dimensional Bone Properties

  • Jakub Kamiński
  • Adrian Wit
  • Krzysztof Janc
  • Jacek TarasiukEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)


Bone tissue is a structure with a high level of geometrical complexity as a result of mutual distribution of a large number of pores and bone scaffolds. For the study of the mechanical properties of the bone, there is a demand to generated microstructures comparable to trabecular bone with similar characteristics. Internal structure of the trabecular and compact bone has a high impact of their mechanical and biological character. The novel methodology for the definition of three-dimensional geometries with the properties similar to natural bone is presented. An algorithm uses a set of parameters to characterize ellipsoids computed based on Finite Element Method (FEM). A comparative analysis of real trabecular bone samples and the corresponding generated models is presented. Additional validation schemas are proposed. It is concluded that computer-aided modelling appears to be an important tool in the study of the mechanical behavior of bone microstructure.


Microstructure modelling Trabecular bone Porous structure 



This work was partially financed by the Faculty of Physics and Applied Computer Science AGH. Adrian Wit has been partly supported by the EU Project POWR.03.02.00-00-I004/16.


  1. 1.
    Romanova, V., Balokhonov, R., Makarov, P., Schmauder, S., Soppa, E.: Simulation of elasto–plastic behaviour of an artificial 3D-structure under dynamic loading. Comput. Mater. Sci. 28, 518–528 (2003)CrossRefGoogle Scholar
  2. 2.
    Saylor, D., Fridy, J., El-Dasher, B., Jung, K.-Y., Rollett, A.: Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall. Mater. Trans. A 35, 1969–1979 (2004)CrossRefGoogle Scholar
  3. 3.
    Brahme, A., Alvi, M.H., Saylor, D., Fridy, J., Rollett, A.D.: 3D reconstruction of microstructure in a commercial purity aluminum. Scripta Mater. 55, 75–80 (2006)CrossRefGoogle Scholar
  4. 4.
    Haire, T., Ganney, P., Langton, C.: An investigation into the feasibility of implementing fractal paradigms to simulate cancellous bone structure. Comput. Methods Biomech. Biomed. Eng. 4, 341–354 (2001)CrossRefGoogle Scholar
  5. 5.
    Rajon, D.A., Jokisch, D.W., Patton, P.W., Shah, A.P., Watchman, C.J., Bolch, W.E.: Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements. Phys. Med. Biol. 47, 1741–1759 (2002)CrossRefGoogle Scholar
  6. 6.
    Ruiz, O., Schouwenaars, R., Ramírez, E.I., Jacobo, V.H., Ortiz, A.: Analysis of the architecture and mechanical properties of cancellous bone using 2D voronoi cell based models. In: Proceedings of the World Congress on Engineering 2010, WCE 2010, vol. I, pp. 1–6 (2010)Google Scholar
  7. 7.
    Kowalczyk, P.: Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. J. Biomech. 36, 961–972 (2003)CrossRefGoogle Scholar
  8. 8.
    Kowalczyk, P.: Orthotropic properties of cancellous bone modelled as parameterized cellular material. Comput. Methods Biomech. Biomed. Eng. 9, 135–147 (2006)CrossRefGoogle Scholar
  9. 9.
    Kowalczyk, P.: Simulation of orthotropic microstructure remodelling of cancellous bone. J. Biomech. 43, 563–569 (2010)CrossRefGoogle Scholar
  10. 10.
    Lakatos, E., Bojtár, I.: Trabecular bone adaptation in a finite element frame model using load dependent fabric tensors. Mech. Mater. 43, 1–9 (2011)CrossRefGoogle Scholar
  11. 11.
    Donaldson, F.E., Pankaj, P., Law, A.H., Simpson, A.H.: Virtual trabecular bone models and their mechanical response. Inst. Mech. Eng. Proc. Part H J. Eng. Med. 222, 1185–1195 (2008)CrossRefGoogle Scholar
  12. 12.
    Wang, J.: Modelling young’s modulus for porous bones with microstructural variation and anisotropy. J. Mater. Sci. Mater. Med. 21, 463–472 (2010)CrossRefGoogle Scholar
  13. 13.
    Mouton, E.: Caractérisation expérimentale des propriéteé élastiques apparentes de l’os spongieux porcin: essais mécaniques et imagerie, Master’s thesis, École nationale d’ingénieurs de Metz (2011)Google Scholar
  14. 14.
    Janc, K., Tarasiuk, J., Bonnet, A.S., Lipinski, P.: Semi-automated algorithm for cortical and trabecular bone separation from CT scans. Comput. Methods Biomech. Biomed. Eng. 14, 217–218 (2011)CrossRefGoogle Scholar
  15. 15.
    Lespessailles, E., Chappard, C., Bonnet, N., Benhamou, C.L.: Imaging techniques for evaluating bone microarchitecture. Revue du Rhumatisme 73, 435–443 (2006)CrossRefGoogle Scholar
  16. 16.
    Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., Recker, R.R.: Bone histomorphometry: standardization of nomenclature, symbols, and units. report of the ASBMR histomorphometry nomenclature committee. J. Bone Miner. Res. 2, 595–610 (1987)CrossRefGoogle Scholar
  17. 17.
    Doblaré, M.: Mechanical behaviour of bone tissue. computational models of bone fracture. In: 15th CISM-IUTAM Summer School on “Bone Cell and Tissue Mechanics”, International Centre for Mechanical Sciences, pp. 1–25 (2007)Google Scholar
  18. 18.
    Hildebrand, T., Laib, A., Müller, R., Dequeker, J., Rüegsegger, P.: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14, 1167–1174 (1999)CrossRefGoogle Scholar
  19. 19.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  20. 20.
    Hildebrand, T., Rüegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997)CrossRefGoogle Scholar
  21. 21.
    Fazzalari, N.L., Parkinson, I.H.: Fractal dimension and architecture of trabecular bone. J. Pathol. 178, 100–105 (1996)CrossRefGoogle Scholar
  22. 22.
    Harrigan, T.P., Mann, R.W.: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19, 761–767 (1984)CrossRefGoogle Scholar
  23. 23.
    Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328 (1997)CrossRefGoogle Scholar
  24. 24.
    Cowin, S., Doty, S.: Tissue Mechanics. Springer, New York (2007)CrossRefGoogle Scholar
  25. 25.
    Hildebrand, T., Rüegsegger, P.: Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Eng. 1, 15–23 (1997)CrossRefGoogle Scholar
  26. 26.
    Odgaard, A., Gundersen, H.: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182 (1993)CrossRefGoogle Scholar
  27. 27.
    Toriwaki, J., Yonekura, T.: Euler number and connectivity indexes of a three-dimensional digital picture. FORMATOKYO 17, 183–209 (2002)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Harrigan, T.P., Jasty, M., Mann, R.W., Harris, W.H.: Limitations of the continuum assumption in cancellous bone. J. Biomech. 21, 269–275 (1988)CrossRefGoogle Scholar
  29. 29.
    Woo, D., Kim, C., Kim, H., Lim, D.: An experimental–numerical methodology for a rapid prototyped application combined with finite element models in vertebral trabecular bone. Exp. Mech. 48, 657–664 (2008)CrossRefGoogle Scholar
  30. 30.
    Woo, D., Kim, C., Lim, D., Kim, H.: Experimental and simulated studies on the plastic mechanical characteristics of osteoporotic vertebral trabecular bone. Curr. Appl. Phys. 10, 729–733 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jakub Kamiński
    • 1
  • Adrian Wit
    • 1
  • Krzysztof Janc
    • 1
  • Jacek Tarasiuk
    • 1
    Email author
  1. 1.Faculty of Physics and Applied Computer Science (WFiIS)AGH – University of Science and TechnologyKrakówPoland

Personalised recommendations