Using Random Forest Classifier for Particle Identification in the ALICE Experiment

  • Tomasz TrzcińskiEmail author
  • Łukasz Graczykowski
  • Michał Glinka
  • for the ALICE Collaboration
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 945)


Particle identification is very often crucial for providing high quality results in high-energy physics experiments. A proper selection of an accurate subset of particle tracks containing particles of interest for a given analysis requires filtering out the data using appropriate threshold parameters. Those parameters are typically chosen sub-optimally by using the so-called “cuts” – sets of simple linear classifiers that are based on well-known physical parameters of registered tracks. Those classifiers are fast, but they are not robust to various conditions which can often result in lower accuracy, efficiency, or purity in identifying the appropriate particles. Our results show that by using more track parameters than in the standard way, we can create classifiers based on machine learning algorithms that are able to discriminate much more particles correctly while reducing traditional method’s error rates. More precisely, we see that by using a standard Random Forest method our approach can already surpass classical methods of cutting tracks.


Monte Carlo tracks Random forest classification 



The authors acknowledge the support from the Polish National Science Centre grant no. UMO-2016/21/D/ST6/01946.


  1. 1.
    Aamodt, K., et al.: The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008)Google Scholar
  2. 2.
    Evans, L., Bryant, P.: LHC machine. JINST 3, S08001 (2008)CrossRefGoogle Scholar
  3. 3.
    Shuryak, E.V.: Quark-Gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. 78B, 150 (1978). [Yad. Fiz.28,796(1978)]CrossRefGoogle Scholar
  4. 4.
    Adams, J., et al.: Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005)CrossRefGoogle Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn, 45, 5–32 (2001)CrossRefGoogle Scholar
  6. 6.
    Trzciński, T., Graczykowski, Ł., Glinka, M.: Using random forest classifier for particle identification in the alice experiment. In: Kulczycki, P., Kowalski, P.A., Łukasik, S. (eds.) Contemporary Computational Science, p. 46 (2018)Google Scholar
  7. 7.
    Dellacasa, G., et al.: ALICE: Technical Design Report of the Time Projection Chamber. CERN-OPEN-2000-183, CERN-LHCC-2000-001 (2000)Google Scholar
  8. 8.
    Dellacasa, G., et al.: ALICE technical design report of the time-of-flight system (TOF) (2000)Google Scholar
  9. 9.
    Blum, W., Rolandi, L., Riegler, W.: Particle detection with drift chambers. Particle Acceleration and Detection (2008)Google Scholar
  10. 10.
    Adam, J., et al.: Determination of the event collision time with the ALICE detector at the LHC. Eur. Phys. J. Plus 132(2), 99 (2017)CrossRefGoogle Scholar
  11. 11.
    Adam, J., et al.: Particle identification in ALICE: a Bayesian approach. Eur. Phys. J. Plus 131(5), 168 (2016)CrossRefGoogle Scholar
  12. 12.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)Google Scholar
  13. 13.
    CERN.: Worldwide LHC computing grid.
  14. 14.
    Lin, W.-Z., Fang, J.-A., Xiao, X., Chou, K.-C.: iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLOS ONE 6, 1–7 (2011)CrossRefGoogle Scholar
  15. 15.
    Casanova, R., Saldana, S., Chew, E.Y., Danis, R.P., Greven, C.M., Ambrosius, W.T.: Application of random forests methods to diabetic retinopathy classification analyses. PLOS ONE 9, 1–8 (2014)Google Scholar
  16. 16.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    McKinney, W.: Pandas: a python data analysis library.
  18. 18.
    Sjostrand, T., Mrenna, S., Skands, P.Z.: PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006)CrossRefGoogle Scholar
  19. 19.
    Skands, P.Z.: Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010)CrossRefGoogle Scholar
  20. 20.
    Brun, R., Bruyant, F., Carminati, F., Giani, S., Maire, M., McPherson, A., Patrick, G., Urban, L.: GEANT Detector Description and Simulation Tool (1994)Google Scholar
  21. 21.
    Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. 36(11), 1–13 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tomasz Trzciński
    • 1
    Email author
  • Łukasz Graczykowski
    • 2
  • Michał Glinka
    • 1
  • for the ALICE Collaboration
  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
  2. 2.Faculty of PhysicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations