Advertisement

From Simulation to Implementation: Practical Advice for Policy Makers Who Want to Use Computer Modeling as an Analysis and Communication Tool

  • Javier Sandoval FélixEmail author
  • Manuel Castañón-Puga
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 209)

Abstract

The public policy design process is an exercise that has become increasingly complex, involved in great uncertainty that can fall into improvisation and ignoring long-term effects. Thus, the possibility of decision makers to experiment and discover through computer models the possible results of public policies before they are implemented would be a helpful tool to have, generating useful anticipatory knowledge and non-reactive strategies. Nevertheless, institutional planning exercises that make use of these models are practically absent despite the existing tools to elaborate them, given that until now it has been almost an activity restricted to the scientific community due in part by the lack of introductory literature focused to the non-specialized public servant. In light of this situation, this chapter shows basic computational modeling concepts and advice aimed at policymakers presented from an urban planning perspective. It starts by showing a fundamental weakness of current policy design: ignoring the relationships and interactions between the components of an urban context. Next, the complexity approach is presented as a way to address this absence, along with the methods and tools that it uses, and the application of this approach on public policies and cities through computational modeling. Finally, a series of considerations and recommendations are presented regarding computational model-building. Based on recent model communication protocols of the scientific community, the chapter concludes with a model presentation guide aimed at a non-specialized audience, as it may be a necessary step as a part of the policy implementation process.

References

  1. 1.
    Gutierrez Chaparro, J.J.: Planeacion urbana en México: un analysis critico sobre su proceso de evolucion. Red Rev Científicas América Lat el Caribe, España y Port 12, 52–63 (2009)Google Scholar
  2. 2.
    Portugali, J., Meyer, H., Stolk, E., Tan, E.: Complexity Theories of Cities have Come of Age, 1st edn. Springer (2012)Google Scholar
  3. 3.
    Lynch, K.: A Theory of Good City Form. MIT Press (1981)Google Scholar
  4. 4.
    Bettencourt, L.M.A.: The origins of scaling in cities. Science 340(80), 1438–1441 (2013).  https://doi.org/10.1126/science.1235823MathSciNetCrossRefGoogle Scholar
  5. 5.
    Marshall, S.: City planning, design and evolution concepts (2009)Google Scholar
  6. 6.
    Sandoval-Félix, J., Castañón-Puga, M., Gaxiola-Pacheco, C., Suarez, E.: Identifying clusters of complex urban–rural issues as part of policy making process using a network analysis approach: a case study in Bahía de Los Ángeles, México. Sustainability 9, 1059 (2017).  https://doi.org/10.3390/su9061059CrossRefGoogle Scholar
  7. 7.
    OECD, Global Science Forum: Applications of complexity science for public policy: new tools for finding unanticipated consequences and unrealized opportunities. Erice, Sicily (2009)Google Scholar
  8. 8.
    Alves, B., Sakowski, P., Tovolli, M.: Modeling Complex Systems for Public Policies, 1st edn. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  9. 9.
    Ball, P.: Why Society is a Complex Matter: Meeting Twenty-First Century Challenges with a New Kind of Science, 1st edn. Springer (2012)Google Scholar
  10. 10.
    IMIP: Estudio geoestadístico del fenómeno delictivo. Ensenada, México (2014)Google Scholar
  11. 11.
    IMIP: Programa parcial de desarrollo urbano Maneadero-Punta Banda, Ensenada, B.C. Ensenada, México (2012)Google Scholar
  12. 12.
    Sandoval-Félix, J.: Adecuacion y reprogramacion del software urban growth simulator para su utilizacion en los procesos de planeacion de la ciudad de Ensenada, B.C., Mexico. Archit. City Environ. 91–110 (2011)Google Scholar
  13. 13.
    Weaver, W.: Science and complexity. Am. Sci. 36, 536–544 (1948).  https://doi.org/10.1007/978-1-4899-0718-9_30CrossRefGoogle Scholar
  14. 14.
    Filatova, T.: Empirical agent-based land market: integrating adaptive economic behavior in urban land-use models. Comput. Environ. Urban Syst. 54, 397–413 (2015).  https://doi.org/10.1016/j.compenvurbsys.2014.06.007CrossRefGoogle Scholar
  15. 15.
    Edmonds, B., Meyer, R.: Simulating Social Complexity: A Handbook, 1st edn. Springer, Manchester (2013)Google Scholar
  16. 16.
    Weiler, R., Engelbrecht, J.: The new sciences of networks & complexity: a short introduction. Cadmus J. 2, 131–141 (2013)Google Scholar
  17. 17.
    Beheshti, R., Sukthankar, G.: A hybrid modeling approach for parking and traffic prediction in urban simulations. AI Soc. 1–12 (2014)Google Scholar
  18. 18.
    Easley, D., Kleinberg, J.: Networks, crowds, and markets: reasoning about a highly connected world. Science 81(80), 744 (2010).  https://doi.org/10.1017/CBO9780511761942
  19. 19.
    Morcol, G.: Urban sprawl and public policy: a complexity theory perspective. Emerg. Complex Organ. 14, 1–16 (2012)Google Scholar
  20. 20.
    Batty, M.: Cities as complex systems: scaling, interactions, networks, dynamics and urban morphologies. London (2008)Google Scholar
  21. 21.
    Read, S.: Meaning and material: phenomenology, complexity, science and adjacent possible cities. In: Complexity Theories of Cities have Come of Age, pp. 105–127 (2012)Google Scholar
  22. 22.
    Mitchell, M.: Complexity: A Guided Tour, 1st edn. Oxford University Press, New York (2009)Google Scholar
  23. 23.
    Goldstein, J.: Emergence as a construct: history and issues. Emergence 1, 49–72 (1999).  https://doi.org/10.1207/s15327000em0101_4CrossRefGoogle Scholar
  24. 24.
    Gilbert, N., Troitzcsch, K.G.: Simulation for the Social Scientist, 2nd edn. Open University Press, Glasgow (2005)Google Scholar
  25. 25.
    Anderson, P.W.: More is different. Science 177, 393–396 (1972).  https://doi.org/10.1126/science.177.4047.393CrossRefGoogle Scholar
  26. 26.
    Batty, M., Marshall, S.: The origins of complexity theory in cities and planning. In: Complexity Theories of Cities have Come of Age, pp. 21–45 (2012)Google Scholar
  27. 27.
    Furtado, B.A.: Policy space: agent based modeling, 1st edn. Institute for Applied Economic Research—IPEA, Rio de Janeiro (2018)Google Scholar
  28. 28.
    Page, S.E.: Preface. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, 1st edn, pp. 9–14. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  29. 29.
    Gentile, J.E., Glazner, C., Koehler, M.: Simulation models for public policy. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, 1st edn, pp. 73–83. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  30. 30.
    Bettencourt, L.M.A.: Cities as complex systems. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, pp. 217–236. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  31. 31.
    Rand, W.: Complex systems: concepts, literature, possibilities and limitations. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, pp. 37–54. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  32. 32.
    Walloth, C., Gurr, J.M., Schmidt, J.A.: Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling, 1st edn. Springer, Switzerland (2014)Google Scholar
  33. 33.
    Cairney, P.: An advocacy coalition framework of policy change and the role of policy-oriented learning therein. In: Page, E., Balla, S., Lodge, M. (eds.) Oxford Handbook of the Classics of Public Policy and Administration. Oxford, p. 13 (2012)Google Scholar
  34. 34.
    Bar-Yam, Y.: Complexity theory in applied policy worldwide. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, 1st edn, pp. 239–259. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  35. 35.
    Anderson, E.G.: An initial simulation model for aiding policy analysis in urban insurgencies. In: Proceedings—Winter Simulation Conference, pp. 1168–1176 (2007)Google Scholar
  36. 36.
    Widener, M.J., Metcalf, S.S., Bar-Yam, Y.: Agent-based modeling of policies to improve urban food access for low-income populations. Appl. Geogr. 40, 1–10 (2013).  https://doi.org/10.1016/j.apgeog.2013.01.003CrossRefGoogle Scholar
  37. 37.
    Gomes, O.: The economy as a complex object. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, pp. 169–190. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  38. 38.
    Kenbeek, S.D., Bone, C., Moseley, C.: A network modeling approach to policy implementation in natural resource management agencies. Comput. Environ. Urban Syst. 57, 155–177 (2016).  https://doi.org/10.1016/j.compenvurbsys.2016.02.003CrossRefGoogle Scholar
  39. 39.
    Yarime, M., Kharrazi, A.: Understanding the environment as a complex, dynamic natural-social system: opportunities and challenges in public policies for promoting global sustainability. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies. Institute for Applied Economic Research, pp. 127–140 (2015)Google Scholar
  40. 40.
    Lee, J.: Development of a community-accessible urban sprawl impact assessment system for Northeast Ohio (2001)Google Scholar
  41. 41.
    Noth, M., Borning, A., Waddell, P.: An extensible, modular architecture for simulating urban development, transportation, and environmental impacts. Comput. Environ. Urban Syst. 27, 181–203 (2003).  https://doi.org/10.1016/S0198-9715(01)00030-8CrossRefGoogle Scholar
  42. 42.
    Johnson, J.R., Nowak, A., Ormerod, P., et al.: Non-equilibrium social science and policy introduction and essays on new and changing paradigms in socio-economic thinking, 1st edn. Springer (2017)Google Scholar
  43. 43.
    Tessone, C.J.: The complex nature of social systems. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, pp. 141–168. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  44. 44.
    Haghshenas, H., Vaziri, M., Gholamialam, A.: Evaluation of sustainable policy in urban transportation using system dynamics and world cities data: a case study in Isfahan. Cities 45, 104–115 (2015).  https://doi.org/10.1016/j.cities.2014.11.003CrossRefGoogle Scholar
  45. 45.
    Roumboutsos, A., Kapros, S.: A game theory approach to urban public transport integration policy. Transp. Policy 15, 209–215 (2008).  https://doi.org/10.1016/j.tranpol.2008.05.001CrossRefGoogle Scholar
  46. 46.
    Almeida, A.: Overcoming chaos: legislatures as complex adaptive systems. In: Alves, B., Sakowski, P., Tovolli, M. (eds.) Modeling Complex Systems for Public Policies, pp. 337–362. Institute for Applied Economic Research, Brasília (2015)Google Scholar
  47. 47.
    Jacobson, M.J.: Education as a complex system: implications for educational research and policy. In: Modeling Complex Systems for Public Policies. Institute for Applied Economic Research, pp. 301–314 (2015)Google Scholar
  48. 48.
    Ahrweiler, P., Schilperoord, M., Pyka, A., Gilbert, N.: Modelling research policy: ex-ante evaluation of complex policy instruments. Jasss 18 (2015).  https://doi.org/10.18564/jasss.2927
  49. 49.
    Sandoval-Félix, J., Castañón-Puga, M.: Using an urban growth simulator for Ensenada city public policy analysis. In: Computational Social Science Society of the Americas (CSSSA). Santa Fe, pp. 1–12 (2015)Google Scholar
  50. 50.
    Chettiparamb, A.: Complexity theory and planning: examining “fractals” for organising policy domains in planning practice. Plan Theory 13, 5–25 (2013).  https://doi.org/10.1177/1473095212469868CrossRefGoogle Scholar
  51. 51.
    Meek, J.: Complexity theory for public administration and policy. Emerg. Complex Organ. 12 (2010)Google Scholar
  52. 52.
    Portugali, J.: Complexity theories of cities: achievements, criticism and potentials. In: Complex Theory for Cities have Come Age, pp. 1–14 (2009).  https://doi.org/10.1007/978-3-642-24544-2Google Scholar
  53. 53.
    Jacobs, J.: The Death and Life of Great American Cities. Random House, New York (1961)Google Scholar
  54. 54.
    Batty, M.: Complexity in city systems: understanding, evolution, and design. London (2007)Google Scholar
  55. 55.
    Portugali, J.: Complexity, Cognition and the City, 1st edn. Springer, Tel Aviv (2011)CrossRefGoogle Scholar
  56. 56.
    Atun, F.: Understanding effects of complexity in cities during disasters. In: Walloth, C., Gurr, J.M., Schmidt, J.A. (eds.) Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling. Springer, pp. 51–65 (2014)Google Scholar
  57. 57.
    Murgante, B., Borruso, G., Lapucci, A.: Geocomputation and Urban Planning (2009)Google Scholar
  58. 58.
    Alberti, M.: Advances in Urban Ecology. Springer, New York (2008)CrossRefGoogle Scholar
  59. 59.
    Roo, G. De Silva, E.A.: A Planner’s Encounter with Complexity. ASHGATE (2010)Google Scholar
  60. 60.
    Xie, F., Levinson, D.M.: Evolving Transportation Networks (2011)Google Scholar
  61. 61.
    Heppenstall, A., Crooks, A., See, L., Batty, M.: Agent-Based Models of Geographical Systems, 1st edn. Springer (2012)Google Scholar
  62. 62.
    Basse, R.M., Omrani, H., Charif, O., et al.: Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl. Geogr. 53, 160–171 (2014).  https://doi.org/10.1016/j.apgeog.2014.06.016CrossRefGoogle Scholar
  63. 63.
    Liu, Y., He, Q., Tan, R., et al.: Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China. Appl. Geogr. 66, 109–118 (2016).  https://doi.org/10.1016/j.apgeog.2015.11.012CrossRefGoogle Scholar
  64. 64.
    Wissen Hayek, U., Efthymiou, D., Farooq, B., et al.: Quality of urban patterns: spatially explicit evidence for multiple scales. Landsc. Urban Plan. 142, 47–62 (2015).  https://doi.org/10.1016/j.landurbplan.2015.05.010CrossRefGoogle Scholar
  65. 65.
    Peng, J., Liu, Y., Wu, J., et al.: Landscape and urban planning linking ecosystem services and landscape patterns to assess urban ecosystem health: a case study in Shenzhen City, China. Landsc. Urban Plan. 143, 56–68 (2015).  https://doi.org/10.1016/j.landurbplan.2015.06.007CrossRefGoogle Scholar
  66. 66.
    Rezayan, H., Delavar, M.R., Frank, A.U., Mansouri, A.: Spatial rules that generate urban patterns: emergence of the power law in the distribution of axial line length. Int. J. Appl. Earth Obs. Geoinf. 12, 317–330 (2010).  https://doi.org/10.1016/j.jag.2010.04.003CrossRefGoogle Scholar
  67. 67.
    Frantál, B., Greer-Wootten, B., Klusáček, P., et al.: Exploring spatial patterns of urban brownfields regeneration: the case of Brno, Czech Republic. Cities 44, 9–18 (2015).  https://doi.org/10.1016/j.cities.2014.12.007CrossRefGoogle Scholar
  68. 68.
    Holt, A.R., Mears, M., Maltby, L., Warren, P.: Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 16, 33–46 (2015).  https://doi.org/10.1016/j.ecoser.2015.08.007CrossRefGoogle Scholar
  69. 69.
    Gupta, R.: The pattern of urban land-use changes: a case study of the indian cities. Environ. Urban Asia 5, 83–104 (2014).  https://doi.org/10.1177/0975425314521539CrossRefGoogle Scholar
  70. 70.
    Decraene, J., Monterola. C., Lee, G.K.K., et al.: The emergence of urban land use patterns driven by dispersion and aggregation mechanisms. PLoS One 8 (2013).  https://doi.org/10.1371/journal.pone.0080309CrossRefGoogle Scholar
  71. 71.
    O’Sullivan, D., Perry, G.L.W.: Spatial Simulation: Exploring Pattern and Process (2013)Google Scholar
  72. 72.
    Hossain, S., Scholz, W., Baumgart, S.: Translation of urban planning models: planning principles, procedural elements and institutional settings. Habitat. Int. 48, 140–148 (2015).  https://doi.org/10.1016/j.habitatint.2015.03.006CrossRefGoogle Scholar
  73. 73.
    Aguilera, A., Ugalde, E.: A spatially extended model for residential segregation. Discret. Dyn. Nat. Soc. (2007).  https://doi.org/10.1155/2007/48589CrossRefGoogle Scholar
  74. 74.
    Marull, J., Font, C., Boix, R.: Modelling urban networks at mega-regional scale: are increasingly complex urban systems sustainable? Land Use Policy 43, 15–27 (2015).  https://doi.org/10.1016/j.landusepol.2014.10.014CrossRefGoogle Scholar
  75. 75.
    Li, M.: Social network and social capital in leadership and management research: a review of causal methods. Leadersh Q 24, 638–665 (2013).  https://doi.org/10.1016/j.leaqua.2013.04.005CrossRefGoogle Scholar
  76. 76.
    Hansen, D., Shneiderman, B., Smith, M.A.: Analyzing social media networks with NodeXL: insightsm a connected world, 1st edn. Elsevier, Burlington (2011)Google Scholar
  77. 77.
    Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks (2007). arXiv:cs/0702048[csCY]1275,  https://doi.org/10.1145/1242572.1242805
  78. 78.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 66111 (2004).  https://doi.org/10.1103/PhysRevE.70.066111CrossRefGoogle Scholar
  79. 79.
    Hélie, M.: Conceptualizing the principles of emergent urbanism. Int. J. Archit. Res. 3, 75–91 (2009)Google Scholar
  80. 80.
    Batty, M.: Complexity and emergence in city systems: implications for urban planning 10, 15–32 (2009)Google Scholar
  81. 81.
    Roy, D., Lees, M.H., Palavalli, B., et al.: The emergence of slums: a contemporary view on simulation models. Environ. Model Softw. 59, 76–90 (2014)CrossRefGoogle Scholar
  82. 82.
    Batty, M.: The emergence of cities: complexity and urban dynamics. London (2003)Google Scholar
  83. 83.
    Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals, 1st edn. MIT Press, Cambridge, Massachusetts (2007)Google Scholar
  84. 84.
    Solé, R.V.: Phase Transitions, 1st edn. Princeton University Press, New Jersey (2011)CrossRefGoogle Scholar
  85. 85.
    Wilson, A.: The Science of Cities and Regions: Lectures on Mathematical Model Design. Springer, London (2012)CrossRefGoogle Scholar
  86. 86.
    Aljoufie, M., Zuidgeest, M., Brussel, M., et al.: A cellular automata-based land use and transport interaction model applied to Jeddah, Saudi Arabia. Landsc. Urban Plan. 112, 89–99 (2013).  https://doi.org/10.1016/j.landurbplan.2013.01.003CrossRefGoogle Scholar
  87. 87.
    Gatta, V., Marcucci, E.: Behavioural implications of non-linear effects on urban freight transport policies: the case of retailers and transport providers in Rome. Case Stud. Transp. Policy (2015).  https://doi.org/10.1016/j.cstp.2015.08.001CrossRefGoogle Scholar
  88. 88.
    Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for geo-spatial simulation. Comput. Environ. Urban Syst. 32, 417–430 (2008).  https://doi.org/10.1016/j.compenvurbsys.2008.09.004CrossRefGoogle Scholar
  89. 89.
    Gaube, V., Remesch, A.: Impact of urban planning on household’s residential decisions: an agent-based simulation model for Vienna. Environ. Model Softw. 45, 92–103 (2013).  https://doi.org/10.1016/j.envsoft.2012.11.012CrossRefGoogle Scholar
  90. 90.
    Jordan, R., Birkin, M., Evans, A.: Agent-based modelling of residential mobility, housing choice and regeneration. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 511–524. Springer (2013)Google Scholar
  91. 91.
    Garrocho Rangel, C., Chavez, T., Alvarez, J.A.: La dimension espacial de la competencia comercial. El Colegio Mexiquense (2002)Google Scholar
  92. 92.
    Mahabir, R., Crooks, A., Croitoru, A., et al.: The study of slums as social and physical constructs: challenges and emerging research opportunities. Reg. Stud. Reg. Sci. 3, 737–757 (2016).  https://doi.org/10.1080/21681376.2016.1229130CrossRefGoogle Scholar
  93. 93.
    Patel, A.V.: Slumulation: an integrated simulation framework to explore spatio-temporal dynamic of slum formation in Ahmedabad, India (2012)Google Scholar
  94. 94.
    Barros, J., Sobreira, F.: City of slums: self-organisation across scales (2002)Google Scholar
  95. 95.
    Deep, S., Saklani, A.: Urban sprawl modeling using cellular automata. Egypt. J. Remote Sens. Space. Sci. 17, 179–187 (2014).  https://doi.org/10.1016/j.ejrs.2014.07.001CrossRefGoogle Scholar
  96. 96.
    Lagarias, A.: Urban sprawl simulation linking macro-scale processes to micro-dynamics through cellular automata, an application in Thessaloniki, Greece. Appl. Geogr. 34, 146–160 (2012).  https://doi.org/10.1016/j.apgeog.2011.10.018CrossRefGoogle Scholar
  97. 97.
    Torrens, P., Kevrekidis, I., Ghanem, R., Zou, Y.: Simple urban simulation atop complicated models: multi-scale equation-free computing of sprawl using geographic automata. Entropy 15, 2606–2634 (2013).  https://doi.org/10.3390/e15072606CrossRefzbMATHGoogle Scholar
  98. 98.
    Allen, P.: Spatial planning in a complex unpredictable world of change: towards a proactive co-evolutionary type of planning within the Eurodelta, 1st edn. Coöperatie In Planning UA, Groningen (2016)Google Scholar
  99. 99.
    Zhou, M.: An interval fuzzy chance-constrained programming model for sustainable urban land-use planning and land use policy analysis. Land Use Policy 42, 479–491 (2015).  https://doi.org/10.1016/j.landusepol.2014.09.002CrossRefGoogle Scholar
  100. 100.
    Sakieh, Y., Salmanmahiny, A., Jafarnezhad, J., et al.: Evaluating the strategy of decentralized urban land-use planning in a developing region. Land Use Policy 48, 534–551 (2015).  https://doi.org/10.1016/j.landusepol.2015.07.004CrossRefGoogle Scholar
  101. 101.
    Crooks, A., Patel, A., Wise, S.: Multi-agent systems for urban planning. In: Technologies for Urban and Spatial Planning: Virtual Cities and Territories, pp. 29–56 (2014)Google Scholar
  102. 102.
    De, R.G., Hillier, J., Van, W.J.: Complexity and Planning: Systems, Assemblages and Simulations (New Directions in Planning Theory), 1st edn. Ashgate (2012)Google Scholar
  103. 103.
    De, R.G.: Spatial planning, complexity and a world ‘out of equilibrium’: outline of a non-linear approach to planning. In: Complexity and Planning Systems: Assemblages and Simulations, pp. 129–165 (2011)Google Scholar
  104. 104.
    Porta, J., Parapar, J., Doallo, R., et al.: High performance genetic algorithm for land use planning. Comput. Environ. Urban Syst. 37, 45–58 (2013).  https://doi.org/10.1016/j.compenvurbsys.2012.05.003CrossRefGoogle Scholar
  105. 105.
    Gar-On, Y., Xia, L.: Urban simulation using neural networks and cellular automata for land use planning. In: Symposium on Geospatial Theory, Processing and Applications. Otawwa (2002)Google Scholar
  106. 106.
    Zia, K., Riener, A., Farrahi, K., Ferscha, A.: A new opportunity to urban evacuation analysis: very large scale simulations of social agent systems in repast HPC. In: Proceedings—2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation, PADS 2012, pp. 233–242 (2012)Google Scholar
  107. 107.
    Allen, P.M.: Cities: the visible expression of co-evolving complexity. In: Complexity Theories of Cities have Come of Age, pp. 67–89 (2012)Google Scholar
  108. 108.
    Pumain, D.: Urban systems dynamics, urban growth and scaling laws: the question of ergodicity. In: Complexity Theories of Cities have Come of Age, p. 91 (2012).  https://doi.org/10.1007/978-3-642-24544-2_6Google Scholar
  109. 109.
    Hillier, B.: The genetic code for cities: is it simpler than we think? In: Complexity Theories of Cities have Come of Age, pp. 129–152 (2012).  https://doi.org/10.1007/978-3-642-24544-2Google Scholar
  110. 110.
    Johnson, J.: Cities: systems of systems of systems. Sustain. Dev. 153–172 (2012)Google Scholar
  111. 111.
    Daoudi, M.: The Experimental City, 1st edn. Routledge, New York (2016)Google Scholar
  112. 112.
    Vigil, G.M.: Diseño urbano: teoría y método, 2nd edn. Ediciones Universidad Católica de Chile, México, D.F. (2000)Google Scholar
  113. 113.
    OECD Global Science Forum: Effective modelling of urban systems to address the challenges of climate change and sustainability. In: OECD Global Science Forum, p. 99 (2011)Google Scholar
  114. 114.
    Castelliani, B., Hafferty, F.: Sociology and Complexity Science. A New Field of Inquiry. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  115. 115.
    Furtado, B.A., Sakowski, P.A.M., Tóvolli, M.H.: A complexity approach for public policies. Inst Pesqui Econômica Apl (2015)Google Scholar
  116. 116.
    Fang, S., Gertner, G.Z., Sun, Z., Anderson, A.A.: The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landsc. Urban Plan. 73, 294–306 (2005).  https://doi.org/10.1016/j.landurbplan.2004.08.006CrossRefGoogle Scholar
  117. 117.
    Sudhira, H.S., Ramachandra, T.V., Jagadish, K.S.: Urban sprawl: metrics, dynamics and modelling using GIS. Appl. Earth Obs. Geoinf. 5, 29–39 (2004).  https://doi.org/10.1016/j.jag.2003.08.002CrossRefGoogle Scholar
  118. 118.
    Axelrod, R.: Advancing the art of simulation in the social sciences. J. Jpn. Int. Econ. 12, 16–22 (2003).  https://doi.org/10.1002/(SICI)1099-0526(199711/12)3:2%3c16:AID-CPLX4%3e3.0.CO;2-KCrossRefGoogle Scholar
  119. 119.
    Conte, R., Gilbert, N., Bonelli, G., et al.: Manifesto of computational social science. Eur. Phys. J. Spec. Top. 214, 325–346 (2012).  https://doi.org/10.1140/epjst/e2012-01697-8CrossRefGoogle Scholar
  120. 120.
    Cioffi-Revilla, C.: Computational social science. Wiley Interdiscip. Rev. Comput. Stat. 2, 259–271 (2010).  https://doi.org/10.1002/wics.95CrossRefGoogle Scholar
  121. 121.
    Gries, D., Schneider, F.B., Cioffi-Revilla, C.: Introduction to Computational Social Science: Principles and Applications, 2nd edn. Springer, Fairfax (2017)Google Scholar
  122. 122.
    Crooks, A., Heppenstall, A., Malleson, N.: Agent-based modeling. In: Huang, B. (ed.) Comprehensive Geographic Information Systems. Elsevier, pp. 219–243 (2018)Google Scholar
  123. 123.
    Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling, 2nd edn. MIT Press, London (2015)Google Scholar
  124. 124.
    Railsback, S.F., Grimm, V.: Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, New Jersey (2012)zbMATHGoogle Scholar
  125. 125.
    Heppenstall, A., Crooks, A.: Agent-Based Modeling in Geographical Systems, vol. 9 (2016)Google Scholar
  126. 126.
    Tobler, W.R.: A computer movie simulation urban growth in detroit region. Econ. Geogr. 46, 234–240 (1970).  https://doi.org/10.1126/science.11.277.620CrossRefGoogle Scholar
  127. 127.
    Sullivan, D.O., Unwin, D.J.: Geographic Information Analysis, 2nd edn. Wiley, New Jersey (2010)CrossRefGoogle Scholar
  128. 128.
    Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 120–123 (1970)CrossRefGoogle Scholar
  129. 129.
    Tobler, W.R.: Cellular geography. Philos. Geogr. 379–386 (1979).  https://doi.org/10.1007/978-94-009-9394-5Google Scholar
  130. 130.
    Clarke, K.: Land transition modeling with deltatrons. Santa Barbara (2008)Google Scholar
  131. 131.
    Laila Ab Ghani, N., Abidin, S.Z.Z., Zamani, M.: Generating transition rules of cellular automata for urban growth prediction. Int. J. Geol. 5 (2011)Google Scholar
  132. 132.
    Schiller, F.: Urban transitions: scaling complex cities down to human size. J. Clean Prod. 1–10 (2015).  https://doi.org/10.1016/j.jclepro.2015.08.030CrossRefGoogle Scholar
  133. 133.
    Benenson, I., Torrens, P.: Geosimulation: automata-based modeling of urban phenomena. Wiley (2004)Google Scholar
  134. 134.
    Torrens, P.: How cellular models of urban systems work, p. 68 (2000)Google Scholar
  135. 135.
    Norte, N., Pais, A.: Cellular automata and urban studies: a literature survey. ACE Archit. City Environ. 1 (2007)Google Scholar
  136. 136.
    Aburas, M.M., Ho, Y.M., Ramli, M.F., Ash’aari, Z.H.: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. Int. J. Appl. Earth Obs. Geoinf. 52, 380–389 (2016).  https://doi.org/10.1016/j.jag.2016.07.007CrossRefGoogle Scholar
  137. 137.
    Santé, I., García, A.M., Miranda, D., Crecente, R.: Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan 96, 108–122 (2010).  https://doi.org/10.1016/j.landurbplan.2010.03.001CrossRefGoogle Scholar
  138. 138.
    Batty, M.: Cellular automata and urban form: a primer. J. Am. Plan. Assoc. (1997)Google Scholar
  139. 139.
    Arsanjani, J.J., Helbich, M., Kainz, W., Boloorani, A.D.: Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 21, 265–275 (2011).  https://doi.org/10.1016/j.jag.2011.12.014CrossRefGoogle Scholar
  140. 140.
    van Vliet, J., White, R., Dragicevic, S.: Modeling urban growth using a variable grid cellular automaton. Comput. Environ. Urban Syst. 33, 35–43 (2009).  https://doi.org/10.1016/j.compenvurbsys.2008.06.006CrossRefGoogle Scholar
  141. 141.
    Haase, D., Haase, A., Kabisch, N., et al.: Actors and factors in land-use simulation: the challenge of urban shrinkage. Environ. Model Softw. 35, 92–103 (2012).  https://doi.org/10.1016/j.envsoft.2012.02.012CrossRefGoogle Scholar
  142. 142.
    Basse, R.M.: A constrained cellular automata model to simulate the potential effects of high-speed train stations on land-use dynamics in trans-border regions. J. Transp. Geogr. 32, 23–37 (2013).  https://doi.org/10.1016/j.jtrangeo.2013.08.005CrossRefGoogle Scholar
  143. 143.
    Gong, W., Yuan, L., Fan, W., Stott, P.: Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling. Int. J. Appl. Earth Obs. Geoinf. 34, 207–216 (2015).  https://doi.org/10.1016/j.jag.2014.07.005CrossRefGoogle Scholar
  144. 144.
    Loibl, W., Toetzer, T.: Modeling growth and densification processes in suburban regions—simulation of landscape transition with spatial agents. Environ. Model Softw. 18, 553–563 (2003).  https://doi.org/10.1016/S1364-8152(03)00030-6CrossRefGoogle Scholar
  145. 145.
    Sohl, T.L., Claggett, P.R.: Clarity versus complexity: land-use modeling as a practical tool for decision-makers. J. Environ. Manage. 129, 235–243 (2013).  https://doi.org/10.1016/j.jenvman.2013.07.027CrossRefGoogle Scholar
  146. 146.
    Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.P.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017).  https://doi.org/10.1016/j.cosrev.2017.03.001CrossRefGoogle Scholar
  147. 147.
    Epstein, J.M.: Agent-based computational models and generative social science. Complexity 4, 41–60 (1999).  https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3c41:AID-CPLX9%3e3.3.CO;2-6MathSciNetCrossRefGoogle Scholar
  148. 148.
    Wilensky, U.: NetLogo flocking model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1998). http://ccl.northwestern.edu/netlogo/models/Flocking
  149. 149.
    Box, G.E.P.: Robustness in the strategy of scientific model building. In: Launer, R.L., Wilkinson, G.N. (eds.) Robustness in Statistics, pp. 201–236 . Academic Press, INC. (1979)Google Scholar
  150. 150.
    Grimm, V., Berger, U., Bastiansen, F., et al.: A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006).  https://doi.org/10.1016/j.ecolmodel.2006.04.023CrossRefGoogle Scholar
  151. 151.
    Grimm, V., Berger, U., DeAngelis, D., et al.: The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).  https://doi.org/10.1016/j.ecolmodel.2010.08.019CrossRefGoogle Scholar
  152. 152.
    Sayama, H.: Introduction to the Modeling and Analysis of Complex Systems, 1st edn. Open SUNY Textbooks, Geneseo (2015)Google Scholar
  153. 153.
    Caparrini, F.S., García Vázquez, J.C.: NetLogo Una herramienta de modelado. CulturePlex (2017)Google Scholar
  154. 154.
    Vidal, J.: Fundamentals of Multiagent Systems with Netlogo examples (2010)Google Scholar
  155. 155.
    Lee, J.S., Filatova, T., Ligmann-Zielinska, A., et al.: The complexities of agent-based modeling output analysis. Jasss 18, 1–26 (2015).  https://doi.org/10.18564/jasss.2897
  156. 156.
    Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press, New York (2011)Google Scholar
  157. 157.
    Monks, T., Currie, C.S.M., Onggo, B.S., et al.: Strengthening the reporting of empirical simulation studies: introducing the STRESS guidelines. J. Simul. 7778, 1–13 (2018).  https://doi.org/10.1080/17477778.2018.1442155CrossRefGoogle Scholar
  158. 158.
    Müller, B., Bohn, F., Dreßler, G., et al.: Describing human decisions in agent-based models—ODD+D, an extension of the ODD protocol. Environ. Model. Softw. (2013).  https://doi.org/10.1016/j.envsoft.2013.06.003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Javier Sandoval Félix
    • 1
    Email author
  • Manuel Castañón-Puga
    • 2
  1. 1.Instituto Municipal de Investigación y Planeación de EnsenadaEnsenadaMexico
  2. 2.Facultad de Ciencias Químicas e Ingeniería, Campus Tijuana, UABCTijuanaMexico

Personalised recommendations