Towards Intelligent Systems for Ubiquitous Computing: Tacit Knowledge-Inspired Ubicomp

  • Violeta Ocegueda-MiramontesEmail author
  • Mauricio A. Sanchez
  • Leocundo Aguilar
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 209)


This work attempts to contribute to shortening the gap between the original conception of ubicomp and the current state of the art. Thus, the original concept has been analyzed to identify one of the main advances required to achieve this. Authors consider that context-awareness is the key element to accomplish this goal and compare the context-aware system architectures to humans’ body parts, activities, and processes. Later they argue that, since context-aware systems are heavily influenced by humans context-awareness, it should implement techniques inspired by the human thinking process. Then, the concept of knowledge is reviewed altogether with a model of the human thinking process. Consequently, they propose the tacit context-modeling and the tacit context-reasoning techniques based on that model. Later, granular computing theory is proposed to implement the tacit context modeling technique, with which we propose the particular granular computing, the preconcept granular computing, and the concept granular computing. The authors conclude that the approach presented could help improve context-aware systems’ performance since it takes inspiration on how they perceive the only perfect machine ever created works, the brain.


  1. 1.
    Abbagnano, N.: Diccionario de Filosofía. Fondo de Cultura Económica, México (2004)Google Scholar
  2. 2.
    Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: International Symposium on Handheld and Ubiquitous Computing. Springer, pp. 304–307 (1999)Google Scholar
  3. 3.
    Addis, M.: Tacit and explicit knowledge in construction management. Constr. Manag. Econ. 34(7–8), 439–445 (2016)Google Scholar
  4. 4.
    Afifi, T.D., Zamanzadeh, N., Harrison, K., Callejas, M.A.: Wired: the impact of media and technology use on stress (cortisol) and inflammation (interleukin il-6) in fast paced families. Comput. Hum. Behav. 81, 265–273 (2018)Google Scholar
  5. 5.
    Aguilar, J., Jerez, M., Rodríguez, T.: Cameonto: context awareness meta ontology modeling. Appl. Comput. Inform. 14(2), 202–213 (2018)Google Scholar
  6. 6.
    Alavi, M., Leidner, D.E.: Knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q. 107–136 (2001)Google Scholar
  7. 7.
    Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications: a survey. J. Syst. Softw. 117, 55–83 (2016)Google Scholar
  8. 8.
    Augusto, J.C., Callaghan, V., Cook, D., Kameas, A., Satoh, I.: Intelligent environments: a manifesto. Hum. Centric Comput. Inf. Sci. 3(1), 12 (2013)Google Scholar
  9. 9.
    Bargiela, A., Pedrycz, W.: Granular computing. In: Handbook on Computational Intelligence: Volume 1: Fuzzy Logic, Systems, Artificial Neural Networks, and Learning Systems. World Scientific, pp. 43–66 (2016)Google Scholar
  10. 10.
    Baumard, P.: Tacit Knowledge in Organizations. Sage (1999)Google Scholar
  11. 11.
    Berg-Beckhoff, G., Nielsen, G., Ladekjær Larsen, E.: Use of information communication technology and stress, burnout, and mental health in older, middle-aged, and younger workers-results from a systematic review. Int. J. Occup. Environ. Health 23(2), 160–171 (2017)Google Scholar
  12. 12.
    Börger, E., Raschke, A.: Modeling Context Awareness, pp. 135–180. Springer, Berlin, Heidelberg (2018)Google Scholar
  13. 13.
    Borges, R.: Tacit knowledge sharing between it workers: the role of organizational culture, personality, and social environment. Manag. Res. Rev. 36(1), 89–108 (2012)Google Scholar
  14. 14.
    Brooks, S.: Does personal social media usage affect efficiency and well-being? Comput. Hum. Behav. 46, 26–37 (2015)Google Scholar
  15. 15.
    Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: Easyliving: technologies for intelligent environments. In: International Symposium on Handheld and Ubiquitous Computing, Springer, pp. 12–29 (2000)Google Scholar
  16. 16.
    Cao, Q., Niu, X.: Integrating context-awareness and utaut to explain alipay user adoption. Int. J. Ind. Ergon. 69, 9–13 (2019)Google Scholar
  17. 17.
    Cao, X., Sun, J.: Exploring the effect of overload on the discontinuous intention of social media users: an sor perspective. Comput. Hum. Behav. 81, 10–18 (2018)Google Scholar
  18. 18.
    Carvalho, R., Andrade, R., Oliveira, K., Kolski, C.: Catalog of invisibility requirements for UbiComp and IoT applications. In: 2018 IEEE 26th International Requirements Engineering Conference (RE). IEEE, pp. 88–99 (2018)Google Scholar
  19. 19.
    Carvalho, R.M., de Castro Andrade, R.M., de Oliveira, K.M., de Sousa, Santos I., Bezerra, C.I.M.: Quality characteristics and measures for human-computer interaction evaluation in ubiquitous systems. Softw. Qual. J. 25(3), 743–795 (2017). Scholar
  20. 20.
    Carvalho, R.M., Andrade, R.M., de Oliveira, K.M.: Towards a catalog of conflicts for HCI quality characteristics in ubicomp and IoT applications: process and first results. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS). IEEE, pp. 1–6 (2018)Google Scholar
  21. 21.
    Cheetham, C.E., Barnes, S.J., Albieri, G., Knott, G.W., Finnerty, G.T.: Pansynaptic enlargement at adult cortical connections strengthened by experience. Cereb. Cortex 24(2), 521–531 (2012)Google Scholar
  22. 22.
    Cheng, X., Yang, J., Xia, L.: A service-oriented context-awareness reasoning framework and its implementation. Electron. Libr. 36(6), 1114–1134 (2018)Google Scholar
  23. 23.
    Collins, H.: Tacit and Explicit Knowledge. University of Chicago Press (2010)Google Scholar
  24. 24.
    Couderc, P., Kermarrec, A.M.: Enabling context-awareness from network-level location tracking. In: International Symposium on Handheld and Ubiquitous Computing. Springer, pp. 67–73 (1999)Google Scholar
  25. 25.
    Cowan, R., David, P.A., Foray, D.: The explicit economics of knowledge codification and tacitness. Ind. Corp. Change 9(2), 211–253 (2000)Google Scholar
  26. 26.
    Davenport, T.H., Prusak, L., et al.: Working Knowledge: How Organizations Manage What They Know. Harvard Business Press (1998)Google Scholar
  27. 27.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)Google Scholar
  28. 28.
    Dhir, A., Yossatorn, Y., Kaur, P., Chen, S.: Online social media fatigue and psychological wellbeing—a study of compulsive use, fear of missing out, fatigue, anxiety and depression. Int. J. Inf. Manag. 40, 141–152 (2018)Google Scholar
  29. 29.
    Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006). Scholar
  30. 30.
    Eraut, M.: Non-formal learning and tacit knowledge in professional work. Br. J. Educ. Psychol. 70(1), 113–136 (2000)Google Scholar
  31. 31.
    Forman, G.H., Zahorjan, J.: The challenges of mobile computing. Computer 27(4), 38–47 (1994)Google Scholar
  32. 32.
    Gaudioso, F., Turel, O., Galimberti, C.: The mediating roles of strain facets and coping strategies in translating techno-stressors into adverse job outcomes. Comput. Hum. Behav. 69, 189–196 (2017)Google Scholar
  33. 33.
    Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23(6), 1706–1724 (2017)Google Scholar
  34. 34.
    Haldin-Herrgard, T.: Difficulties in diffusion of tacit knowledge in organizations. J. Intell. Cap. 1(4), 357–365 (2000)Google Scholar
  35. 35.
    Harris, K.J., Harris, R.B., Carlson, J.R., Carlson, D.S.: Resource loss from technology overload and its impact on work-family conflict: can leaders help? Comput. Hum. Behav. 50, 411–417 (2015)Google Scholar
  36. 36.
    Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Retschitzegger, W.: Context-awareness on mobile devices-the hydrogen approach. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003. IEEE, p. 10 (2003)Google Scholar
  37. 37.
    Johannessen, J.A., Olaisen, J., Olsen, B.: Mismanagement of tacit knowledge: the importance of tacit knowledge, the danger of information technology, and what to do about it. Int. J. Inf. Manag. 21(1), 3–20 (2001)Google Scholar
  38. 38.
    Karvonen, H., Kujala, T.: Designing and evaluating ubicomp characteristics of intelligent in-car systems. Adv. Ergon. Des. Usability Spec. Popul. Part I 16, 27 (2014)Google Scholar
  39. 39.
    Khabou, N., Rodriguez, I.B., Jmaiel, M.: An overview of a novel analysis approach for enhancing context awareness in smart environments. Inf. Softw. Technol. (2018)Google Scholar
  40. 40.
    Krumm, J.: Ubiquitous Computing Fundamentals. Chapman and Hall/CRC, Washington (2016)Google Scholar
  41. 41.
    Lam, A.: Tacit knowledge, organizational learning and societal institutions: an integrated framework. Org. Stud. 21(3), 487–513 (2000)Google Scholar
  42. 42.
    Lam, A., et al.: Tacit knowledge, organisational learning and innovation: a societal perspective, vol. 98. DRUID (1998)Google Scholar
  43. 43.
    Lee, A.R., Son, S.M., Kim, K.K.: Information and communication technology overload and social networking service fatigue: a stress perspective. Comput. Hum. Behav. 55, 51–61 (2016a)Google Scholar
  44. 44.
    Lee, J.H., Hashimoto, H.: Intelligent space–concept and contents. Adv. Robot. 16(3), 265–280 (2002)Google Scholar
  45. 45.
    Lee, J.W., Helal, S.: Context awareness computing in smart spaces using stochastic analysis of sensor data. In: International Conference on Intelligent Human Systems Integration. Springer, pp. 3–9 (2019)Google Scholar
  46. 46.
    Lee, S.B., Lee, S.C., Suh, Y.H.: Technostress from mobile communication and its impact on quality of life and productivity. Total Qual Manag Bus Excell 27(7–8), 775–790 (2016b)Google Scholar
  47. 47.
    Lin, H., Yan, Z., Fu, Y.: Adaptive security-related data collection with context awareness. J. Netw. Comput. Appl. 126, 88–103 (2019)Google Scholar
  48. 48.
    Liu, C., Park, E.M., Jiang, F.: Examining effects of context-awareness on ambient intelligence of logistics service quality: user awareness compatibility as a moderator. J. Ambient Intell. Humaniz. Comput. (2018).
  49. 49.
    Machado, R., Rosa, F., Almeida, R., Primo, T., Pilla, M., Pernas, A., Yamin, A.: A hybrid architecture to enrich context awareness through data correlation. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pp. 1451–1453. ACM, New York, NY, USA (2018).
  50. 50.
    Maier, C., Laumer, S., Weinert, C., Weitzel, T.: The effects of technostress and switching stress on discontinued use of social networking services: a study of facebook use. Inf. Syst. J. 25(3), 275–308 (2015)Google Scholar
  51. 51.
    Mak, B., Nickerson, R., Sim, J.: Mobile technology dependence and mobile technostress. Int. J. Innov. Technol. Manag. (2011)Google Scholar
  52. 52.
    Maran, V., Medeiros Machado, G., Machado, A., Augustin, I., de Oliveira, Palazzo, M.J.: Upcad: a methodology of integration between ontology-based context-awareness modeling and relational domain data. Information 9(2), 30 (2018)Google Scholar
  53. 53.
    Maravilhas, S., Martins, J.: Strategic knowledge management a digital environment: tacit and explicit knowledge in fab labs. J. Bus. Res. 94, 353–359 (2019)Google Scholar
  54. 54.
    Meyer, H., Sancho, J.C., Quiroga, J.V., Zyulkyarov, F., Roca, D., Nemirovsky, M.: Disaggregated computing. an evaluation of current trends for datacentres. Procedia Comput. Sci. 108, 685–694 (2017)Google Scholar
  55. 55.
    Mylonas, P.: The evolution of contextual information processing in informatics. Information 9(3) (2018). Scholar
  56. 56.
    Nonaka, I.: A dynamic theory of organizational knowledge creation. Organ. Sci. 5(1), 14–37 (1994)Google Scholar
  57. 57.
    Nonaka, I., Takeuchi, H.: The knowledge-creating company: how Japanese companies create the dynamics of innovation. Oxford University Press (1995)Google Scholar
  58. 58.
    Nonaka, I., Toyama, R.: The Knowledge-Creating Theory Revisited: Knowledge Creation as a Synthesizing Process, pp. 95–110. Palgrave Macmillan, London, UK (2015)Google Scholar
  59. 59.
    Nonaka, I., Byosiere, P., Borucki, C.C., Konno, N.: Organizational knowledge creation theory: a first comprehensive test. Int. Bus. Rev. 3(4), 337–351 (1994)Google Scholar
  60. 60.
    Nonaka, I., Kodama, M., Hirose, A., Kohlbacher, F.: Dynamic fractal organizations for promoting knowledge-based transformation—a new paradigm for organizational theory. Eur. Manag. J. 32(1), 137–146 (2014)Google Scholar
  61. 61.
    Not, E., Petrelli, D.: Blending customisation, context-awareness and adaptivity for personalised tangible interaction in cultural heritage. Int. J. Hum. Comput. Stud. 114, 3–19 (2018)Google Scholar
  62. 62.
    Ocegueda-Miramontes, V., Rodríguez-Díaz, A., Castro, J.R., Sanchez, M.A., Mendoza, O.: On modeling tacit knowledge for intelligent systems. Computer Science and Engineering—Theory and Applications, pp. 69–87. Springer (2018)Google Scholar
  63. 63.
    Papaioannou, A.D., Nejabati, R., Simeonidou, D.: The benefits of a disaggregated data centre: a resource allocation approach. In: Proceedings of GLOBECOM, pp. 1–7 (2016)Google Scholar
  64. 64.
    Park, C., Vertinsky, I., Becerra, M.: Transfers of tacit vs. explicit knowledge and performance in international joint ventures: the role of age. Int. Bus. Rev. 24(1):89–101Google Scholar
  65. 65.
    Pascoe, J., Ryan, N., Morse, D.: Issues in developing context-aware computing. In: International Symposium on Handheld and Ubiquitous Computing, pp. 208–221. Springer (1999)Google Scholar
  66. 66.
    Pedrycz, W.: The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J. Inf. Process. Syst. 7(3), 397–412 (2011)Google Scholar
  67. 67.
    Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a principle of justifiable granularity. Appl. Soft Comput. 13(10), 4209–4218 (2013)Google Scholar
  68. 68.
    Pedrycz, W., Song, M.: Granular fuzzy models: a study in knowledge management in fuzzy modeling. Int. J. Approx. Reason. 53(7), 1061–1079 (2012)MathSciNetGoogle Scholar
  69. 69.
    Polanyi, M.: The Study of Man (1959)Google Scholar
  70. 70.
    Polanyi, M.: Personal Knowledge—Towards a Post-critical Philosophy. Routledge (1962)Google Scholar
  71. 71.
    Polanyi, M.: The logic of tacit inference. Philosophy 41(155), 1–18 (1966)Google Scholar
  72. 72.
    Ribeiro, R.: Tacit knowledge management. Phenomenol. Cogn. Sci. 12(2), 337–366 (2013)Google Scholar
  73. 73.
    Riboni, D.: Special issue on context awareness. Information 9(3) (2018). Scholar
  74. 74.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)Google Scholar
  75. 75.
    Ruta, M., Scioscia, F., Gramegna, F., Ieva, S., Di Sciascio, E., De Vera, R.P.: A knowledge fusion approach for context awareness in vehicular networks. IEEE Internet Things J. 5(4), 2407–2419 (2018)Google Scholar
  76. 76.
    Rutkowski, A.F., Saunders, C.: Emotional and Cognitive Overload: The Dark Side of Information Technology. Routledge (2018)Google Scholar
  77. 77.
    Rutter, M.: Is resilience training the solution to technology overload? Occup. Health Wellbeing 68(7), 18 (2016)Google Scholar
  78. 78.
    Salo, M., Pirkkalainen, H., Koskelainen, T.: Technostress and social networking services: uncovering strains and their underlying stressors. In: Scandinavian Conference on Information Systems, pp. 41–53. Springer (2017)Google Scholar
  79. 79.
    Sanchez, R.: Tacit Knowledge Versus Explicit Knowledge: Approaches to Knowledge Management Practice, p. 191. TEAM LinG (2005)Google Scholar
  80. 80.
    Satoh, I.: Evolutionary mechanism for disaggregated computing. In: 2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 343–350. IEEE (2012)Google Scholar
  81. 81.
    Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–7. ACM (1996)Google Scholar
  82. 82.
    Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de Velde, W.: Advanced interaction in context. In: International Symposium on Handheld and Ubiquitous Computing, pp. 89–101. Springer (1999)Google Scholar
  83. 83.
    Selinger, E., Feist, G., Stone, D.: Erratum to: tacit knowledge: new theories and practices. Phenomenol. Cogn. Sci. 2(12), 251–251 (2013)Google Scholar
  84. 84.
    Sonnentag, S.: Being permanently online and being permanently connected at work: a demands-resources perspective. Permanently Online, Permanently Connected, pp. 258–267. Routledge (2017)Google Scholar
  85. 85.
    Spínola, R.O., Silva, J., Travassos, G.H.: Characterizing ubicomp software projects through a checklist. In: Proceedings of the I Workshop on Pervasive and Ubiquitous Computing, Gramado, Brasil (2007)Google Scholar
  86. 86.
    Spínola, R.O., Pinto, F.C. do R., Travassos, G.H.: Ubicheck: an approach to support requirements definition in the ubicomp domain. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 306–310. ACM (2010)Google Scholar
  87. 87.
    Stenmark, D.: Leveraging tacit organizational knowledge. J. Manag. Inf. Syst. 17(3), 9–24 (2000)Google Scholar
  88. 88.
    Sultan, N.: Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. Int. J. Inf. Manag. 35(5), 521–526 (2015)MathSciNetGoogle Scholar
  89. 89.
    Takayama, L.: The motivations of ubiquitous computing: revisiting the ideas behind and beyond the prototypes. Pers. Ubiquitous Comput. 21(3), 557–569 (2017)Google Scholar
  90. 90.
    Temdee, P., Prasad, R.: Context-Aware Communication and Computing: Applications for Smart Environment. Springer (2008)Google Scholar
  91. 91.
    Theng, Y.L.: Ubiquitous Computing: Design, Implementation and Usability: Design. Implementation and Usability. IGI Global (2008)Google Scholar
  92. 92.
    Virtanen, I.: In search for a theoretically firmer epistemological foundation for the relationship between tacit and explicit knowledge. Electron. J. Knowl. Manag. 11(2), 118 (2013)Google Scholar
  93. 93.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–105 (1991)Google Scholar
  94. 94.
    Weiser, M.: The future of ubiquitous computing on campus. Commun. ACM 41(1), 41–42 (1998)Google Scholar
  95. 95.
    Weiser, M., Gold, R., Brown, J.S.: The origins of ubiquitous computing research at parc in the late 1980s. IBM Syst. J. 38(4), 693–696 (1999)Google Scholar
  96. 96.
    West, M.T.: Ubiquitous computing. In: Proceedings of the 39th Annual ACM SIGUCCS Conference on User Services, pp. 175–182. ACM (2011)Google Scholar
  97. 97.
    Yürür, Ö., Liu, C.H., Sheng, Z., Leung, V.C., Moreno, W., Leung, K.K.: Context-awareness for mobile sensing: a survey and future directions. IEEE Commun. Surv. Tutor. 18(1), 68–93 (2016)Google Scholar
  98. 98.
    Zheng, Y., Shekhar, S., Jose, A.A., Rai, S.K.: Integrating context-awareness and multi-criteria decision making in educational learning. In: Proceedings of the 34th ACM Symposium on Applied Computing (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Violeta Ocegueda-Miramontes
    • 1
    • 2
    Email author
  • Mauricio A. Sanchez
    • 1
    • 2
  • Leocundo Aguilar
    • 1
    • 2
  1. 1.Universidad Autónoma de Baja CaliforniaCalzadaMexico
  2. 2.Universidad #14418 Parque Industrial Internacional TijuanaTijuanaMexico

Personalised recommendations