Advertisement

Blockchain-Based Decentralized Key Management System with Quantum Resistance

  • Hyeongcheol An
  • Rakyong Choi
  • Kwangjo KimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11402)

Abstract

The blockchain technique was first proposed called Bitcoin in 2008 and is a distributed database technology. Public Key Infrastructure (PKI) system, which is one of the key management systems, is a centralized system. There is a possibility of single point failure in currently used centralized PKI system. Classical digital signature algorithm; ECDSA has used the well-known cryptocurrencies such as Bitcoin and Ethereum. Using the Shor’s algorithm, it is vulnerable to an attack by the quantum adversary. In this paper, we propose a blockchain-based key management system using quantum-resistant cryptography. Since it uses a GLP digital signature scheme, which is a secure lattice-based digital signature scheme. Therefore, our construction is based on quantum-resistant cryptography, it is secure against the attack of a quantum adversary and ensures long-term safety. In addition, we design a decentralized blockchain structure with extended X.509 certificate, and it is secure for the single point of failure.

Keywords

Blockchain Quantum-resistant Key management system 

References

  1. 1.
    Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient lattice-based signature scheme with provably secure instantiation. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31517-1_3CrossRefGoogle Scholar
  2. 2.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing-STOC 2013, pp. 575–584. ACM (2013)Google Scholar
  3. 3.
    Fromknecht, C., Velicanu, D., Yakoubov, S.: A decentralized public key infrastructure with identity retention. Cryptology ePrint Archive, Report 2014/803 (2014). http://eprint.iacr.org/2014/803
  4. 4.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)Google Scholar
  5. 5.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing-STOC 1996, pp. 212–219. ACM (1996).  https://doi.org/10.1145/237814.237866
  6. 6.
    Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33027-8_31CrossRefzbMATHGoogle Scholar
  7. 7.
    IBM Research: IBM Q experience (2018). https://www.research.ibm.com/ibm-q/. Accessed 20 Mar 2018
  8. 8.
    Khovayko, O.: Emercoin (2018). https://emercoin.com. Accessed 15 May 2018
  9. 9.
    Laarhoven, T., Mosca, M., Van De Pol, J.: Finding shortest lattice vectors faster using quantum search. Des. Codes Crypt. 77(2–3), 375–400 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_43CrossRefGoogle Scholar
  11. 11.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  12. 12.
    Matsumoto, S., Reischuk, R.M.: IKP: turning a PKI around with blockchains. Cryptology ePrint Archive, Report 2016/1018 (2016). http://eprint.iacr.org/2016/1018
  13. 13.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  14. 14.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings, Annual Symposium on Foundations of Computer Science-FOCS 1994, pp. 124–134. IEEE (1994)Google Scholar
  15. 15.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151 (2014)Google Scholar
  16. 16.
    Yakubov, A., Shbair, W., Wallbom, A., Sanda, D., et al.: A blockchain-based PKI management framework. In: The First IEEE/IFIP International Workshop on Managing and Managed by Blockchain (Man2Block) Colocated with IEEE/IFIP NOMS 2018, Tapei, Tawain, 23–27 April 2018 (2018)Google Scholar
  17. 17.
    Yee, P.: Updates to the Internet X. 509 public key infrastructure certificate and certificate revocation list (CRL) profile (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate of School of Information SecurityKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.School of ComputingKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations