Advertisement

Security Analysis of Mobile Web Browser Hardware Accessibility: Study with Ambient Light Sensors

  • Sanghak Lee
  • Sangwoo Ji
  • Jong KimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11402)

Abstract

Mobile web browsers are evolved to support the functionalities presented by HTML5. With the hardware accessibility of HTML5, it is now possible to access sensor hardware of a mobile device through a web page regardless of the need for a mobile application. In this paper, we analyze the security impact of accessing sensor hardware of a mobile device from mobile web page. First, we present the test results of hardware accessibility from mobile web browsers. Second, to raise awareness of the seriousness of hardware accessibility, we introduce a new POC attack LightTracker which infers the victim’s location using light sensor. We also show the effectiveness of the attack in real world.

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1A2B4010914).

References

  1. 1.
    Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side channels on smartphones. In: Proceedings of the 28th Annual Computer Security Applications Conference, pp. 41–50. ACM (2012)Google Scholar
  2. 2.
    Cai, L., Chen, H.: TouchLogger: inferring keystrokes on touch screen from smartphone motion. HotSec 11, 9 (2011)Google Scholar
  3. 3.
    Cai, L., Chen, H.: On the practicality of motion based keystroke inference attack. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 273–290. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30921-2_16CrossRefGoogle Scholar
  4. 4.
    Das, A., Borisov, N., Caesar, M.: Tracking mobile web users through motion sensors: attacks and defenses. In: Proceedings of the 23rd Annual Network and Distributed System Security Symposium (NDSS) (2016)Google Scholar
  5. 5.
    Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: AccelPrint: imperfections of accelerometers make smartphones trackable. In: NDSS (2014)Google Scholar
  6. 6.
    Diao, W., Liu, X., Zhou, Z., Zhang, K.: Your voice assistant is mine: how to abuse speakers to steal information and control your phone. In: Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices, pp. 63–74. ACM (2014)Google Scholar
  7. 7.
    Han, J., Owusu, E., Nguyen, L.T., Perrig, A., Zhang, J.: ACComplice: location inference using accelerometers on smartphones. In: 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS), pp. 1–9. IEEE (2012)Google Scholar
  8. 8.
    HTML5TEST: how well does your browser support HTML5? (2017). https://html5test.com/results/mobile.html
  9. 9.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)CrossRefGoogle Scholar
  10. 10.
    Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting modern web browsers to build unique browser fingerprints. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 878–894. IEEE (2016)Google Scholar
  11. 11.
    Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: TouchSignatures: identification of user touch actions and PINs based on mobile sensor data via JavaScript. J. Inf. Secur. Appl. 26, 23–38 (2016)Google Scholar
  12. 12.
    Michalevsky, Y., Boneh, D., Nakibly, G.: Gyrophone: recognizing speech from gyroscope signals. In: USENIX Security, pp. 1053–1067 (2014)Google Scholar
  13. 13.
    Michalevsky, Y., Schulman, A., Veerapandian, G.A., Boneh, D., Nakibly, G.: PowerSpy: location tracking using mobile device power analysis. In: USENIX Security, pp. 785–800 (2015)Google Scholar
  14. 14.
    Miluzzo, E., Varshavsky, A., Balakrishnan, S., Choudhury, R.R.: TapPrints: your finger taps have fingerprints. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 323–336. ACM (2012)Google Scholar
  15. 15.
    Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In: Proceedings of W2SP, pp. 1–12 (2012)Google Scholar
  16. 16.
    Narain, S., Sanatinia, A., Noubir, G.: Single-stroke language-agnostic keylogging using stereo-microphones and domain specific machine learning. In: Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks, pp. 201–212. ACM (2014)Google Scholar
  17. 17.
    Narain, S., Vo-Huu, T.D., Block, K., Noubir, G.: Inferring user routes and locations using zero-permission mobile sensors. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 397–413. IEEE (2016)Google Scholar
  18. 18.
    Narain, S., Vo-Huu, T.D., Block, K., Noubir, G.: The perils of user tracking using zero-permission mobile apps. IEEE Secur. Priv. 15(2), 32–41 (2017)CrossRefGoogle Scholar
  19. 19.
    NETMARKETSHARE: Mobile/tablet top browser share trend (2017). https://www.netmarketshare.com/browser-market-share.aspx?qprid=1&qpcustomb=1
  20. 20.
    Olejnik, Ł., Acar, G., Castelluccia, C., Diaz, C.: The leaking battery. In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp. 254–263. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29883-2_18CrossRefGoogle Scholar
  21. 21.
    Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: Accessory: password inference using accelerometers on smartphones. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications, p. 9. ACM (2012)Google Scholar
  22. 22.
    Simon, L., Anderson, R.: PIN skimmer: inferring PINs through the camera and microphone. In: Proceedings of the Third ACM Workshop on Security and Privacy in Smartphones & Mobile Devices, pp. 67–78. ACM (2013)Google Scholar
  23. 23.
    Spreitzer, R.: PIN skimming: exploiting the ambient-light sensor in mobile devices. In: Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices, pp. 51–62. ACM (2014)Google Scholar
  24. 24.
    Van Goethem, T., Joosen, W., Nikiforakis, N.: The clock is still ticking: timing attacks in the modern web. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1382–1393. ACM (2015)Google Scholar
  25. 25.
    World Wide Web Consortium: Battery status API (2016). https://www.w3.org/TR/battery-status/
  26. 26.
    World Wide Web Consortium: Geolocation API specification, 2nd (edn.) (2016). https://www.w3.org/TR/geolocation-API/
  27. 27.
    World Wide Web Consortium: Vibration API, 2nd (edn.) (2016). https://www.w3.org/TR/vibration/
  28. 28.
    World Wide Web Consortium: Ambient light sensor (2017). https://www.w3.org/TR/ambient-light/
  29. 29.
    World Wide Web Consortium: HTML media capture (2017). https://www.w3.org/TR/html-media-capture/
  30. 30.
    World Wide Web Consortium: Motion sensors explainer (2017). https://www.w3.org/TR/motion-sensors/
  31. 31.
    Xu, Z., Bai, K., Zhu, S.: TapLogger: inferring user inputs on smartphone touchscreens using on-board motion sensors. In: Proceedings of the Fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, pp. 113–124. ACM (2012)Google Scholar
  32. 32.
    Yue, C.: Sensor-based mobile web fingerprinting and cross-site input inference attacks. In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 241–244. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
  2. 2.Defense Industry Technology Center (DITC)PohangSouth Korea

Personalised recommendations