Analysis of miRNA Targets in Correlation to Neurodevelopment and Diagnosis of Autism Spectrum Disorder (ASD)

Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 73)


Autism Spectrum Disorder (ASD) is a broad spectrum of disorders which manifests itself through number of different phenotypes including those affecting communication and behavior. Our aim was to investigate small non coding RNA molecules, miRNAs, and their effect on target genes involved in neurodevelopment and ASD. In addition, we performed our study by investigating selected miRNAs as potential biomarkers for diagnosing children with ASD. MiRNAs selected for this study are found in saliva samples; therefore, sampling is non-invasive and very attractive diagnostic tool for ASD. Children diagnosed at an early stage of life would have the most benefit from an early intervention. We have identified 7 target genes of miRNAs suspected to be involved in ASD through an in silico analysis. We have found negative regulatory interactions between differentially expressed miRNAs and putative targets in ASD. The seven genes found through this study are all connected to neurodevelopmental functions and processes. Malfunction of some or all of these genes is found in connection to ASD and/or other neurodevelopmental disorders. The following 7 genes were found as best candidate genes of miRNAs studied: MAPK10, KCNMA1, DST, ZBTB20, GAS7, NTRK2 and SCN2A.


Neurodevelopment miRNA Gene Autism spectrum disorder (ASD) 


  1. 1.
    Vasu, M.M., Anitha, A., Thanseem, I., Suzuki, K., Yamada, K., Takahashi, T., Wakuda, T., Iwata, K., Tsujii, M., Sugiyama, T., Mori, N.: Serum microRNA profiles in children with autism. Mol. Autism 5(1), 40 (2014)CrossRefGoogle Scholar
  2. 2.
    Galiana-Simal, A., Muñoz-Martinez, V., Calero-Bueno, P., Vela-Romero, M., Beato-Fernandez, L.: Towards a future molecular diagnosis of autism: recent advances in biomarkers research from saliva samples. Int. J. Dev. Neurosci. 67, 1–5 (2018)CrossRefGoogle Scholar
  3. 3.
    Gaudet, P., Livstone, M.S., Lewis, S.E., Thomas, P.D.: Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 12(5), 449–462 (2011)CrossRefGoogle Scholar
  4. 4.
    Kim, J., Krichevsky, A., Grad, Y., Hayes, G.D., Kosik, K.S., Church, G.M., Ruvkun, G.: Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. 101(1), 360–365 (2004)CrossRefGoogle Scholar
  5. 5.
    Cummins, J.M., He, Y., Leary, R.J., Pagliarini, R., Diaz, L.A., Sjoblom, T., Barad, O., Bentwich, Z., Szafranska, A.E., Labourier, E., Raymond, C.K.: The colorectal microRNAome. Proc. Nat. Acad. Sci. 103(10), 3687–3692 (2006)CrossRefGoogle Scholar
  6. 6.
    Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., Wang, G., Wu, Q., Wei, C., Bi, Y., Jiang, L.: Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152(1), 82–96 (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Ji, X., She, F., Gao, Y., Tang, P.: miR-628-3p regulates osteoblast differentiation by targeting RUNX2: possible role in atrophic non-union. Int. J. Mol. Med. 39(2), 279–286 (2017)CrossRefGoogle Scholar
  8. 8.
    Hicks, S.D., Ignacio, C., Gentile, K., Middleton, F.A.: Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 16(1), 52 (2016)CrossRefGoogle Scholar
  9. 9.
    Stark, M.S., Tyagi, S., Nancarrow, D.J., Boyle, G.M., Cook, A.L., Whiteman, D.C., Parsons, P.G., Schmidt, C., Sturm, R.A., Hayward, N.K.: Characterization of the melanoma miRNAome by deep sequencing. PloS one 5(3), e9685 (2010)CrossRefGoogle Scholar
  10. 10.
    Dweep, H., et al.: miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of 3 genomes. J. Biomed. Inform. 44, 839–847 (2011)CrossRefGoogle Scholar
  11. 11.
    Sagane, K., Sugimoto, H., Akaike, A.: Biological characterization of ADAM22 variants reveals the importance of a disintegrin domain sequence in cell surface expression. J. Recept. Sig. Transduct. 30(2), 72–77 (2010)CrossRefGoogle Scholar
  12. 12.
    Grotto, S., Drouin-Garraud, V., Õunap, K., Puusepp-Benazzouz, H., Schuurs-Hoeijmakers, J., Le Meur, N., et al.: Clinical assessment of five patients with BRWD3 mutation at Xq21. 1 gives further evidence for mild to moderate intellectual disability and macrocephaly. Eur. J. Med. Genet. 57(5), 200–206 (2014)CrossRefGoogle Scholar
  13. 13.
    Manganelli, F., Parisi, S., Nolano, M., Tao, F., Paladino, S., Pisciotta, C., et al.: Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 88(22), 2132–2140 (2017)CrossRefGoogle Scholar
  14. 14.
    Makrythanasis, P., Guipponi, M., Santoni, F.A., Zaki, M., Issa, M.Y., Ansar, M., et al.: Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Hum. Genomics 10(1), 26 (2016)CrossRefGoogle Scholar
  15. 15.
    Kshatri, A.S., Gonzalez-Hernandez, A.J., Giraldez, T.: Functional validation of Ca2+ -binding residues from the crystal structure of the BK ion channel. Biochim. Biophys. Acta (BBA)-Biomembr. 1860(4), 943–952 (2018)CrossRefGoogle Scholar
  16. 16.
    Yoshida, S., Harada, H., Nagai, H., Fukino, K., Teramoto, A., Emi, M.: Head-tohead juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: genomic structure and seven polymorphisms of the FAP-1 gene. J. Hum. Genet. 47(11), 614 (2002)CrossRefGoogle Scholar
  17. 17.
    McGregor, L.M., Baylin, S.B., Griffin, C.A., Hawkins, A.L., Nelkin, B.D.: Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant. Genomics 22(2), 267–272 (1994)CrossRefGoogle Scholar
  18. 18.
    Buyse, I.M., Shao, G., Huang, S.: The retinoblastoma protein binds to RIZ, a zincfinger protein that shares an epitope with the adenovirus E1A protein. Proc. Natl. Acad. Sci. 92(10), 4467–4471 (1995)CrossRefGoogle Scholar
  19. 19.
    Wolfson, R.L., Chantranupong, L., Wyant, G.A., Gu, X., Orozco, J.M., Shen, K., Condon, K.J., Petri, S., Kedir, J., Scaria, S.M., Abu-Remaileh, M.: KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543(7645), 438 (2017)CrossRefGoogle Scholar
  20. 20.
    Jones, M.H., Furlong, R.A., Burkin, H., Jennifer Chalmers, I., Brown, G.M., Khwaja, O., Affara, N.A.: The Drosophila developmental gene fat facets has a human homologue in Xp11. 4 which escapes X-inactivation and has related sequences on Yq11. 2. Hum. Mol. Genet. 5(11), 1695–1701 (1996)CrossRefGoogle Scholar
  21. 21.
    Velayos-Baeza, A., Vettori, A., Copley, R.R., Dobson-Stone, C., Monaco, A.P.: Analysis of the human VPS13 gene family. Genomics 84(3), 536–549 (2004)CrossRefGoogle Scholar
  22. 22.
    Hamann, J., Aust, G., Araç, D., Engel, F.B., Formstone, C., Fredriksson, R., et al.: International union of basic and clinical pharmacology. XCIV. Adhesion G protein–coupled receptors. Pharmacol. Rev. 67(2), 338–367 (2015)CrossRefGoogle Scholar
  23. 23.
    Mondal, K., Ramachandran, D., Patel, V.C., Hagen, K.R., Bose, P., Cutler, D.J., Zwick, M.E.: Excess variants in AFF2 detected by massively parallel sequencing of males with autism spectrum disorder. Hum. Mol. Genet. 21(19), 4356–4364 (2012)CrossRefGoogle Scholar
  24. 24.
    Stessman, H.A., Xiong, B., Coe, B.P., Wang, T., Hoekzema, K., Fenckova, M., et al.: Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49(4), 515 (2017)CrossRefGoogle Scholar
  25. 25.
    Catterall, W.A., Perez-Reyes, E., Snutch, T.P., Striessnig, J.: International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltagegated calcium channels. Pharmacol. Rev. 57(4), 411–425 (2005)CrossRefGoogle Scholar
  26. 26.
    Anai, M., Shojima, N., Katagiri, H., Ogihara, T., Sakoda, H., Onishi, Y., et al.: A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J. Biol. Chem. 280(18), 18525–18535 (2005)CrossRefGoogle Scholar
  27. 27.
    Côté, J.F., Vuori, K.: Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115(24), 4901–4913 (2002)CrossRefGoogle Scholar
  28. 28.
    Sardi, S.P., Murtie, J., Koirala, S., Patten, B.A., Corfas, G.: Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127(1), 185–197 (2006)CrossRefGoogle Scholar
  29. 29.
    Mitsui, K., Nakajima, D., Ohara, O., Nakayama, M.: Mammalian fat3: a large protein that contains multiple cadherin and EGF-like motifs. Biochem. Biophys. Res. Commun. 290(4), 1260–1266 (2002)CrossRefGoogle Scholar
  30. 30.
    Ju, Y.T., Chang, A.C., She, B.R., Tsaur, M.L., Hwang, H.M., Chao, C.C.K., et al.: gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc. Natl. Acad. Sci. 95(19), 11423–11428 (1998)CrossRefGoogle Scholar
  31. 31.
    Mori, F., Tanji, K., Miki, Y., Toyoshima, Y., Yoshida, M., Kakita, A., et al.: G protein-coupled receptor 26 immunoreactivity in intranuclear inclusions associated with polyglutamine and intranuclear inclusion body diseases. Neuropathology 36(1), 50–55 (2016)CrossRefGoogle Scholar
  32. 32.
    Puffenberger, E.G., Jinks, R.N., Wang, H., Xin, B., Fiorentini, C., Sherman, E.A., Degrazio, D., Shaw, C., Sougnez, C., Cibulskis, K., Gabriel, S.: A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Hum. Mutat. 33(12), 1639–1646 (2012)CrossRefGoogle Scholar
  33. 33.
    Miceli, F., Striano, P., Soldovieri, M.V., Fontana, A., Nardello, R., Robbiano, A., Bellini, G., Elia, M., Zara, F., Taglialatela, M., Mangano, S.: A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia 56(2), e15–e20 (2015)CrossRefGoogle Scholar
  34. 34.
    Lin, Z., Liu, J., Ding, H., Xu, F., Liu, H.: Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Nat. Commun. 9(1), 268 (2018)CrossRefGoogle Scholar
  35. 35.
    Mondin, M., Tessier, B., Thoumine, O.: Assembly of synapses: biomimetic assays to control neurexin/neuroligin interactions at the neuronal surface. Curr. Protoc. Neurosci. 64(1), 2–19 (2013)CrossRefGoogle Scholar
  36. 36.
    Oksenberg, N., Stevison, L., Wall, J.D., Ahituv, N.: Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 9(1), e1003221 (2013)CrossRefGoogle Scholar
  37. 37.
    Oksenberg, N., Ahituv, N.: The role of AUTS2 in neurodevelopment and human evolution. Trends Genet. 29(10), 600–608 (2013)CrossRefGoogle Scholar
  38. 38.
    Engmann, O., Labonté, B., Mitchell, A., Bashtrykov, P., Calipari, E.S., Rosenbluh, C., Loh, Y.H., Walker, D.M., Burek, D., Hamilton, P.J., Issler, O.: Cocaine-induced chromatin modifications associate with increased expression and three-dimensional looping of Auts2. Biol. Psychiatry 82(11), 794–805 (2017)CrossRefGoogle Scholar
  39. 39.
    Beunders, G., Voorhoeve, E., Golzio, C., Pardo, L.M., Rosenfeld, J.A., Talkowski, M.E., Simonic, I., Lionel, A.C., Vergult, S., Pyatt, R.E., Van De Kamp, J.: Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus. Am. J. Hum. Genet. 92(2), 210–220 (2013)CrossRefGoogle Scholar
  40. 40.
    Weisner, P.A.: The role of AUTS2 in neurodevelopment and neurological disease. Doctoral dissertation, University of Illinois at Urbana-Champaign (2015)Google Scholar
  41. 41.
    Lima, C.S., Ortega, M.M., Ozelo, M.C., Araujo, R.C., De Souza, C.A., Lorand-Metze, I., Annichino-Bizzacchi, J.M., Costa, F.F.: Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk. Leuk. Res. 32(3), 401–405 (2008)CrossRefGoogle Scholar
  42. 42.
    Weisberg, I., Tran, P., Christensen, B., Sibani, S., Rozen, R.: A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 64(3), 169–172 (1998)CrossRefGoogle Scholar
  43. 43.
    TRIMMER, E.E.: Studies of the flavin enzyme Methylenetetrahydrofolate Reductase (MTHFR)Google Scholar
  44. 44.
    Blumkin, E., Levav-Rabkin, T., Melamed, O., Galron, D., Golan, H.M.: Genderspecific effect of Mthfr genotype and neonatal vigabatrin interaction on synaptic proteins in mouse cortex. Neuropsychopharmacology 36(8), 1714 (2011)CrossRefGoogle Scholar
  45. 45.
    Mortimer, B.C., Beveridge, D.J., Martins, I.J., Redgrave, T.G.: Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and ApoE-deficient mice evidence for slow metabolism via an alternative apoE-dependent pathway. J. Biol. Chem. 270(48), 28767–28776 (1995)CrossRefGoogle Scholar
  46. 46.
    Zhou, Y., Mägi, R., Milani, L., Lauschke, V.M.: Global genetic diversity of human apolipoproteins and effects on cardiovascular disease risk. J. Lipid Res. 59(10), 1987–2000 (2018)CrossRefGoogle Scholar
  47. 47.
    Leduc, V., Jasmin-Bélanger, S., Poirier, J.: APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol. Med. 16(10), 469–477 (2010)CrossRefGoogle Scholar
  48. 48.
    Beisiegel, U., Weber, W., Ihrke, G., Herz, J., Stanley, K.K.: The LDL–receptor– related protein, LRP, is an apolipoprotein E-binding protein. Nature 341(6238), 162 (1989)CrossRefGoogle Scholar
  49. 49.
    Qian, W., Fischer, C.E., Schweizer, T.A., Munoz, D.G.: Association between psychosis phenotype and APOE genotype on the clinical profiles of Alzheimer’s disease. Curr. Alzheimer Res. 15(2), 187–194 (2018)CrossRefGoogle Scholar
  50. 50.
    Dweep, H., et al.: miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat. Methods 12(8), 697–697 (2015)CrossRefGoogle Scholar
  51. 51.
    Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C.T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G.D., Morris, Q.: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38(Suppl), W214–W220 (2010). PubMed AbstractCrossRefGoogle Scholar
  52. 52.
    Seger, R., Krebs, E.G.: The MAPK signaling cascade. FASEB J. 9(9), 726–735 (1995)CrossRefGoogle Scholar
  53. 53.
    Filosa, J.A., Bonev, A.D., Straub, S.V., Meredith, A.L., Wilkerson, M.K., Aldrich, R.W., Nelson, M.T.: Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9(11), 1397 (2006)CrossRefGoogle Scholar
  54. 54.
    Tanaka, Y., Meera, P., Song, M., Knaus, H.G., Toro, L.: Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant α + β subunit complexes. J. Physiol. 502(3), 545–557 (1997)CrossRefGoogle Scholar
  55. 55.
    Chevrier, S., Emslie, D., Shi, W., Kratina, T., Wellard, C., Karnowski, A., Erikci, E., Smyth, G.K., Chowdhury, K., Tarlinton, D., Corcoran, L.M.: The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. J. Exp. Med. 211(5), 827–840 (2014)CrossRefGoogle Scholar
  56. 56.
    Rasmussen, M.B., Nielsen, J.V., Lourenço, C.M., Melo, J.B., Halgren, C., Geraldi, C.V., Marques, W., Rodrigues, G.R., Thomassen, M., Bak, M., Hansen, C.: Neurodevelopmental disorders associated with dosage imbalance of ZBTB20 correlate with the morbidity spectrum of ZBTB20 candidate target genes. J. Med. Genet. 51(9), 605–613 (2014)CrossRefGoogle Scholar
  57. 57.
    Xie, Z., Zhang, H., Tsai, W., Zhang, Y., Du, Y., Zhong, J., Szpirer, C., Zhu, M., Cao, X., Barton, M.C., Grusby, M.J.: Zinc finger protein ZBTB20 is a key repressor of alpha-fetoprotein gene transcription in liver. Proc. Nat. Acad. Sci. 105(31), 10859–10864 (2008)CrossRefGoogle Scholar
  58. 58.
    Sutherland, A.P., Zhang, H., Zhang, Y., Michaud, M., Xie, Z., Patti, M.E., Grusby, M.J., Zhang, W.J.: Zinc finger protein Zbtb20 is essential for postnatal survival and glucose homeostasis. Mol. Cell. Biol. 29(10), 2804–2815 (2009)CrossRefGoogle Scholar
  59. 59.
    Mattioli, F., Piton, A., Gérard, B., Superti-Furga, A., Mandel, J.L., Unger, S.: Novel de novo mutations in ZBTB20 in Primrose syndrome with congenital hypothyroidism. Am. J. Med. Genet. Part A 170(6), 1626–1629 (2016)CrossRefGoogle Scholar
  60. 60.
    Liu, X., Zhang, P., Bao, Y., Han, Y., Wang, Y., Zhang, Q., Zhan, Z., Meng, J., Li, Y., Li, N., Zhang, W.J.: Zinc finger protein ZBTB20 promotes toll-like receptor-triggered innate immune responses by repressing IκBα gene transcription. Proc. Nat. Acad. Sci. 110(27), 11097–11102 (2013)CrossRefGoogle Scholar
  61. 61.
    Kohannim, O., Hibar, D.P., Stein, J.L., Jahanshad, N., Hua, X., Rajagopalan, P., Toga, A., Jack Jr., C.R., Weiner, M.W., De Zubicaray, G.I., McMahon, K.L.: Discovery and replication of gene influences on brain structure using LASSO regression. Front. Neurosci. 6, 115 (2012)CrossRefGoogle Scholar
  62. 62.
    Ju, Y.T., Chang, A.C., She, B.R., Tsaur, M.L., Hwang, H.M., Chao, C.C.K., Cohen, S.N., LinChao, S.: gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc. Nat. Acad. Sci. 95(19), 11423–11428 (1998)CrossRefGoogle Scholar
  63. 63.
    Chandley, M.J., Crawford, J.D., Szebeni, A., Szebeni, K., Ordway, G.A.: Erratum to: NTRK2 expression levels are reduced in laser captured pyramidal neurons from the anterior cingulate cortex in males with autism spectrum disorder. Mol. Autism 6(1), 38 (2015)CrossRefGoogle Scholar
  64. 64.
    Li, Z., Zhang, Y., Wang, Z., Chen, J., Fan, J., Guan, Y., Zhang, C., Yuan, C., Hong, W., Wang, Y., Wu, Z.: The role of BDNF, NTRK2 gene and their interaction in development of treatment-resistant depression: data from multicenter, prospective, longitudinal clinic practice. J. Psychiatr. Res. 47(1), 8–14 (2013)CrossRefGoogle Scholar
  65. 65.
    Weiss, L.A., Escayg, A., Kearney, J.A., Trudeau, M., MacDonald, B.T., Mori, M., Reichert, J., Buxbaum, J.D., Meisler, M.H.: Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol. Psychiatry 8(2), 186 (2003)CrossRefGoogle Scholar
  66. 66.
    Nickel, K., van Elst, L.T., Domschke, K., Gläser, B., Stock, F., Endres, D., Maier, S., Riedel, A.: Heterozygous deletion of SCN2A and SCN3A in a patient with autism spectrum disorder and Tourette syndrome: a case report. BMC Psychiatry 18(1), 248 (2018)CrossRefGoogle Scholar
  67. 67.
    Dalpé, G., Leclerc, N., Vallée, A., Messer, A., Mathieu, M., De Repentigny, Y., Kothary, R.: Dystonin is essential for maintaining neuronal cytoskeleton organization. Mol. Cell. Neurosci. 10(5), 243–257 (1998)CrossRefGoogle Scholar
  68. 68.
    Ryan, S.D., Ferrier, A., Sato, T., O’Meara, R.W., De Repentigny, Y., Jiang, S.X., Hou, S.T., Kothary, R.: Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Mol. Biol. Cell 23(4), 553–566 (2012)CrossRefGoogle Scholar
  69. 69.
    Vincent, J.B., Choufani, S., Horike, S.I., Stachowiak, B., Li, M., Dill, F.J., Marshall, C., Hrynchak, M., Pewsey, E., Ukadike, K.C., Friedman, J.M.: A translocation t (6; 7)(p 11–p12; q22) associated with autism and mental retardation: localization and identification of candidate genes at the breakpoints. Psychiatr. Genet. 18(3), 101–109 (2008)CrossRefGoogle Scholar
  70. 70.
    Paşca, S.P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Paşca, A.M., Cord, B., Palmer, T.D., Chikahisa, S., Nishino, S., Bernstein, J.A.: Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17(12), 1657 (2011)CrossRefGoogle Scholar
  71. 71.
    Laumonnier, F., Roger, S., Guérin, P., Molinari, F., M’Rad, R., Cahard, D., Belhadj, A., Halayem, M., Persico, A.M., Elia, M., Romano, V.: Association of a functional deficit of the BK Ca channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am. J. Psychiatry 163(9), 1622–1629 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.International Burch University SarajevoIlidža, SarajevoBosnia and Herzegovina
  2. 2.Sarajevo School of Science and TechnologyIlidža, SarajevoBosnia and Herzegovina

Personalised recommendations