Miniaturized Stimulator for Imaging of Live Cell Responses to High Frequency Mechanical Vibration

  • Heidi T. HalonenEmail author
  • Jari A. K. Hyttinen
  • Teemu O. Ihalainen
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 73)


Cellular mechanobiology is highly important for tissue development and disease formation. However, lack of proper tools limit investigation of the cellular responses to different mechanical cues. High frequency (HF) vibration has already been applied in different cellular applications, but the knowledge of the stimulation effect on cells is limited. To meet this challenge, we designed a HF vibration stimulator for combined mechanical manipulation of live cells and high-resolution light-microscopy. Our system utilizes a commercial miniaturized speaker to vibrate a 3D printed sample vehicle horizontally. Technical tests demonstrated excellent performance at lower frequencies (30–60 Hz), enabling even high magnitude (HMHF, Gpeak ≥ 1 Gpeak) method. Real-time acceleration measurement and light-microscopy both revealed accurately and precisely produced low magnitude (LMHF, Gpeak < 1 Gpeak) vibrations. With our system, we could observe cellular responses to the LMHF (0.2 Gpeak, 30 Hz) vibration. In this paper, we introduce an inexpensive stimulation platform for the mechanobiology research of different cell applications.


High frequency vibration Live cell imaging Mechanotransduction 



This study was funded by Finnish Funding agency for Innovation (TEKES, Human spare parts project), City of Tampere, Instrumentariumin tiedesäätiö s.r. foundation, Finnish Cultural Foundation (The Kainuu Regional Fund), and the Finnish Academy of Science and Letters (Väisälä Foundation).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44(4), 593–599 (2011)CrossRefGoogle Scholar
  2. 2.
    Tirkkonen, L., Halonen, H., Hyttinen, J., Kuokkanen, H., Sievänen, H., Koivisto, A.M., Mannerström, B., Sándor, G.K., Suuronen, R., Miettinen, S., Haimi, S.: The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J. R. Soc. Interface 8(65), 1736–1747 (2011)CrossRefGoogle Scholar
  3. 3.
    Zhang, C., Li, J., Zhang, L., Zhou, Y., Hou, W., Quan, H., Li, X., Chen, Y., Yu, H.: Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch. Oral. Biol. 57(10), 1395–1407 (2012)CrossRefGoogle Scholar
  4. 4.
    Uzer, G., Pongkitwitoon, S., Ete Chan, M., Judex, S.: Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 46(13), 2296–2302 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, X., He, F., Zhong, D.Y., Luo, Z.P.: Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells. Biomed. Res. Int. 2015, 540731 (2015)Google Scholar
  6. 6.
    Pemberton, G.D., Childs, P., Reid, S., Nikukar, H., Tsimbouri, P.M., Gadegaard, N., Curtis, A.S., Dalby, M.J.: Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine (Lond). 10(4), 547–560 (2015)CrossRefGoogle Scholar
  7. 7.
    Tong, Z., Duncan, R.L., Jia, X.: Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng. Part A. 19(15–16), 1862–1878 (2013)CrossRefGoogle Scholar
  8. 8.
    Cho, H., Seo, Y.K., Jeon, S., Yoon, H.H., Choi, Y.K., Park, J.K.: Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci. 90(15–16), 591–599 (2012)CrossRefGoogle Scholar
  9. 9.
    Takeuchi, R., Saito, T., Ishikawa, H., Takigami, H., Dezawa, M., Ide, C., Itokazu, Y., Ikeda, M., Shiraishi, T., Morishita, S.: Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. Arthritis Rheum. 54(6), 897–905 (2006)CrossRefGoogle Scholar
  10. 10.
    Holdsworth, D.W., Nikolov, H.N., Au, J., Beaucage, K., Kishimoto J., Dixon, S.J.: Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells. In: Molthen, R.C., Weaver, J.B. (eds.) Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging, Proceedings of SPIE, 8317, 831715-1–831715-6. SPIE (2012)Google Scholar
  11. 11.
    Lorusso, D., Nikolov, H.N., Chmiel, T., Beach, R.J., Sims, S.M., Dixon, S.J., Holdsworth, D.W.: A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation. In: Krol, A., Gimi, B. (eds.) Medical imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, Proceedings of SPIE, 10137, 101370F-1–101370F-7. SPIE (2017)Google Scholar
  12. 12.
    Mäki, A.J., Verho, J., Kreutzer, J., Ryynänen, T., Rajan, D., Pekkanen-Mattila, M., Ahola, A., Hyttinen, J., Aalto-Setälä, K., Lekkala, J., Kallio, P.: A portable microscale cell culture system with indirect temperature control. SLAS Technol. 1, 2472630318768710 (2018)Google Scholar
  13. 13.
    Kreutzer, J., Ylä-Outinen, L., Mäki, A.J., Ristola, M., Narkilahti, S., Kallio, P.: Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array. J. Neurosci. Methods 280, 27–35 (2017)CrossRefGoogle Scholar
  14. 14.
    Uzer, G., Thompson, W.R., Sen, B., Xie, Z., Miller, S.S., Bas, G., Styner, M., Rubin, C.T., Judex, S., Burridge, K., Rubin, J.: Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed Nucleus. Stem Cells 33(6), 2063–2076 (2015)CrossRefGoogle Scholar
  15. 15.
    Uzer, G., Pongkitwitoon, Ian, S., Thompson, W.R., Rubin, J., Chan, M.E., Judex, S.: Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. PLoS One. 9(3), e90840 (2014)CrossRefGoogle Scholar
  16. 16.
    Milner, J.S., Grol, M.W., Beaucage, K.L., Dixon, S.J., Holdsworth, D.W.: Finite-element modeling of viscoelastic cells during high-frequency cyclic strain. J. Funct. Biometr. 3(1), 209–224 (2012)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Hsu, H.Y., Li, X., Xian, C.J.: Effects of frequency and acceleration amplitude on osteoblast mechanical vibration responses: a finite element study. Biomed. Res. Int. 2016, 2735091 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland

Personalised recommendations