Advertisement

Microneedle-Based Sensor Systems for Real-Time Continuous Transdermal Monitoring of Analytes in Body Fluids

  • Edina Vranić
  • Amina TucakEmail author
  • Merima Sirbubalo
  • Ognjenka Rahić
  • Alisa Elezović
  • Jasmina Hadžiabdić
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 73)

Abstract

Microneedles, tiny micron-sized structures, made of a variety of materials, have been recently developed for a painless and safe transdermal delivery of drugs through the skin. While microneedles minimally disrupt the outermost layer of the skin and create a pathway to deliver the therapeutic agents, they could also act as conduits for biosignal sensing. Microneedle-based sensors made of conductive and electrochemically reactive biomaterials can provide the valuable information on the levels of analytes in the blood. Also, researchers have realized the great potential of microneedles integrated with microelectrodes for extraction of interstitial fluid and capillary blood, for enhanced monitoring of patient health. Furthermore, they could serve as a tool for analysis of complex medical conditions and illnesses. This microneedle sensor technology can provide a sophisticated analytical approach for in situ and simultaneous detection of numerous analytes. The microneedles can also be used to measure metabolites, biomarkers, and drug level in the interstitial fluid and capillary blood, as well as for the use of microneedle array technology as biosensors for continuous monitoring of analytes in body fluids.

Keywords

Microneedles Biosensors Diagnostics Drug monitoring Lab-on-a-chip 

Notes

Conflict of Interest

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Prausnitz, M.R., Allen, M.G., Gujral, I.J.: Microneedle device for extraction and sensing of bodily fluids. US007344499Google Scholar
  2. 2.
    Cahill, E., O’Cearbhaill, E.: Toward biofunctional microneedles for stimulus-responsive drug delivery. Bioconjug. Chem. 26, 1289–1296 (2015)CrossRefGoogle Scholar
  3. 3.
    Sachdeva, V., Banga, A.K.: Microneedles and their applications. Recent Pat. Drug Deliv. Form, 5(2), 95–132 (2011)CrossRefGoogle Scholar
  4. 4.
    Donnelly, R., Mooney, K., Caffarel-Salvador, E., Torrisi, B., Eltayib, E., McElnay, J.: Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit. 36(1), 10–17 (2013)Google Scholar
  5. 5.
    Li, C., Lee, C., Lee, K., Jung, H.: An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 15, 17–25 (2012)CrossRefGoogle Scholar
  6. 6.
    McGrew, R., MeGrew, M.: Encyclopedia of Medical History. McGraw Hill, New York (1985)CrossRefGoogle Scholar
  7. 7.
    Romanyuk, A., Zvezdin, V., Samant, P., Grenader, M., Zemlyanova, M., Prausnitz, M.: Collection of analytes from microneedle patches. Anal. Chem. 86(21), 10520–10523 (2014)CrossRefGoogle Scholar
  8. 8.
    Williams, A.: Transdermal and topical drug delivery. From theory to clinical practice. 1st edn, pp. 3–45. Pharmaceutical Press, London (2003)Google Scholar
  9. 9.
    Cass, A., Sharma, S.: Microneedle enzyme sensor arrays for continuous in vivo monitoring. Methods Enzymol. 589, 413–427 (2017)CrossRefGoogle Scholar
  10. 10.
    El-Laboudi, A., Oliver, N., Cass, A., Johnston, D.: Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol. Ther. 15(1), 101–115 (2013)CrossRefGoogle Scholar
  11. 11.
    Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G., et al.: Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92(2), 502–504 (2001)CrossRefGoogle Scholar
  12. 12.
    Caffarel-Salvador, E., Brady, A., Eltayib, E., Meng, T., Alonso-Vicente, A., Gonzalez-Vazquez, P., et al.: Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One. 10(12), e0145644 (2015)CrossRefGoogle Scholar
  13. 13.
    Yadav, D.J., Vaidya, K.A., Kulkarni, P.R., Raut, R.A.: Microneedles: promising technique for transdermal drug delivery. Int. J. Pharm. Bio. Sci. 2(1), 684–708 (2011)Google Scholar
  14. 14.
    Nagamine, K., Kubota, J., Kai, H., Ono, Y., Nishizawa, M.: An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed. Microdevices 19(3), 68 (2017)CrossRefGoogle Scholar
  15. 15.
    Donnelly, R.F., Singh, T.R., Garland, M.J., Migalska, K., Majithiya, R., McCrudden, C.M. et al.: Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater 22(23), 4879–4890 (2012)CrossRefGoogle Scholar
  16. 16.
    Valdés-Ramírez, G., Li, Y., Kim, J., Jia, W., Bandodkar, A., Nuñez-Flores, R., et al.: Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58–62 (2014)CrossRefGoogle Scholar
  17. 17.
    Windmiller, J., Zhou, N., Chuang, M., Valdés-Ramírez, G., Santhosh, P., Miller, P., et al.: Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136(9), 1846–1851 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang, P., Cornwell, M., Prausnitz, M.: Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7(1), 131–141 (2005)CrossRefGoogle Scholar
  19. 19.
    Miller, P., Gittard, S., Edwards, T., Lopez, D., Xiao, X., Wheeler, D., et al.: Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5(1), 13415 (2011)CrossRefGoogle Scholar
  20. 20.
    Kolli, C.S.: Microneedles: bench to bedside. Ther Deliv. 6(9), 1081–1088 (2015)CrossRefGoogle Scholar
  21. 21.
    Miller, P.R., Narayan, R.J., Polsky, R.: Microneedle-based sensors for medical diagnosis. J. Mater. Chem. B 4(8), 1379–1383 (2016)CrossRefGoogle Scholar
  22. 22.
    Chaudhri, B., Ceyssens, F., De Moor, P., Van Hoof, C., Puers, R.: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J. Micromechd Microeng. 20(6), 064006 (2010)CrossRefGoogle Scholar
  23. 23.
    Justino, C.I., Rocha-Santos, T.A., Duarte, A.C.: Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends. Analyt. Chem. 29(10), 1172–1183 (2010)CrossRefGoogle Scholar
  24. 24.
    Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., Papadimitrakopoulos, F.: Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRefGoogle Scholar
  25. 25.
    Strambini, L.M., Longo, A., Scarano, S., Prescimone, T., Palchetti, I., Minunni, M., et al.: Selfpowered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens. Bioelectron. 66, 162–168 (2015)CrossRefGoogle Scholar
  26. 26.
    Mukherjee, E., Collins, S., Isseroff, R., Smith, R.: Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A Phys. 114, 267–275 (2004)CrossRefGoogle Scholar
  27. 27.
    Tsuchiya, K., Nakanishi, N., Uetsuji, Y., Nakamachi, E.: Development of blood extraction system for health monitoring system. Biomed. Microdevices 7(4), 347–353 (2005)CrossRefGoogle Scholar
  28. 28.
    Jina, A., Tierney, M.J., Tamada, J.A., McGill, S., Desai, S., Chua, B., et al.: Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014)CrossRefGoogle Scholar
  29. 29.
    Sharma, S., Huang, Z., Rogers, M., Boutelle, M., Cass, A.E.: Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bional. Chem. 408, 8427–8435 (2016)CrossRefGoogle Scholar
  30. 30.
    Hwa, K.-Y., Subramani, B., Chang, P.-W., Chien, M., Huang, J.-T.: Transdermal microneedle array-based sensor for real time continuous glucose monitoring. Int. J. Electrochem. Sci. 10, 2455–2466 (2015)Google Scholar
  31. 31.
    Zhou, J.X., Tang, L.N., Liang, F.X., Wang, H., Li, Y.T., Zhang, G.J.: MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 142(22), 4322–4329 (2017)CrossRefGoogle Scholar
  32. 32.
    Esfandyarpour, R., Javanmard, M., Koochak, Z., Esfandyarpour, H., Harris, J.S., Davis, R.W.: Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics 7, 044114 (2013)CrossRefGoogle Scholar
  33. 33.
    Bollella, P., Sharma, S., Cass, A.E., Antiochia, R.: Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019)CrossRefGoogle Scholar
  34. 34.
    Dardano, P., Calio, A., Di Palma, V., Bavilacqua, M.F., Di Matteo, A., De Stefano, L.: Multianalyte biosensor patch based on polymeric microneedles. 2018. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano P. (eds.) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431, pp. 73–81. Springer, ChamGoogle Scholar
  35. 35.
    Li, C.G., Joung, H.-A., Noh, H., Song, M.-B., Kim, M.-G., Jung, H.: One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(6), 3286–3292 (2015)CrossRefGoogle Scholar
  36. 36.
    Campbell, A.S., Kim, J., Wang, J.: Wearable electrochemical alcohol biosensors. Curr. Opin Electrochem. 10, 126–135 (2018)CrossRefGoogle Scholar
  37. 37.
    Chinnadayyala, S.R., Park, I., Cho, S.: Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim. Acta 185(5), 250 (2018)CrossRefGoogle Scholar
  38. 38.
    Ng, K.W., Moghimi, S.M.: Skin biosensing and bioanalysis: what the future holds. Prec. Nanomed 1(2), 125–127 (2018)Google Scholar
  39. 39.
    Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)CrossRefGoogle Scholar
  40. 40.
    Whitson, R.C.: Hollow microneedle patch. US20020006355Google Scholar
  41. 41.
    Gonnelli, R.R.: Microneedle with membrane. US20090043250Google Scholar
  42. 42.
    Gattiker, G., Kaler, K.I., Mintchev, M.: Electronic Mosquito: designing a semi-invasive Microsystem for blood sampling, analysis and drug delivery applications. Microsyst. Technol. 12(1–2), 44–51 (2005)CrossRefGoogle Scholar
  43. 43.
    Zimmermann, S., Fienbork, D., Stoeber, B., Flounders, A., Liepmann, D.: In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sens. Actuators B Chem. 99(1), 163–173 (2003)CrossRefGoogle Scholar
  44. 44.
    Guy, R.: Diagnostic devices: Managing diabetes through the skin. Nat. Nanotechnol. 11(6), 493–494 (2016)CrossRefGoogle Scholar
  45. 45.
    Gupta, V.K., Singh, A.K., Kumawat, L.K.: Thiazole Schiff base turn-on fluorescent chemosensor for Al3 + ion. Sens. Actuators B Chem. 195, 98–108 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edina Vranić
    • 1
  • Amina Tucak
    • 1
    Email author
  • Merima Sirbubalo
    • 1
  • Ognjenka Rahić
    • 1
  • Alisa Elezović
    • 1
  • Jasmina Hadžiabdić
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations