Coated 3D Printed PLA Microneedles as Transdermal Drug Delivery Systems

  • Mirela CamovićEmail author
  • Amila Biščević
  • Iman Brčić
  • Kana Borčak
  • Sadžida Bušatlić
  • Nejra Ćenanović
  • Anida Dedović
  • Alen Mulalić
  • Maida Osmanlić
  • Merima Sirbubalo
  • Amina Tucak
  • Edina Vranić
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 73)


Microneedles facilitate transdermal drug delivery by piercing microscale pores through the stratum corneum. They usually penetrate only thought the stratum corneum thus the nociceptors of the skin will not be stimulated. Therefore, as an alternative approach, microneedles provide a minimally invasive method for drug delivery. Additive manufacturing which is called threedimensional (3D) printing revolutionized the field of pharmaceutical and biomedical sciences due to their capabilities for fast and cost-effective prototyping of complex structures. Biodegradable 3D printed PLA microneedles are an emerging class of novel transdermal drug delivery systems. Aims of this study were to fabricate 3D printed microneedles and investigate for the first time the ability to coat different drug formulations on 3D printed microneedles. We demonstrated that 3D printing combined with the post-fabrication etching step could make ideally sized and shaped microneedles. Dip coating method revealed to be the best coating method for 3D printed microneedles because of its simplicity and ability to create a uniform load over the printed microneedles. We have also shown that 3D printed microneedles could successfully penetrate and break off into porcine skin.


3D printing PLA microneedles Transdermal drug delivery Coating 



We would appreciate Assistant Professor Jasmina Hadžiabdić, Assistant Professor Ognjenka Rahić and Assistant Professor Alisa Elezović at the Department of Pharmaceutical Technology for helpful advices, and Teaching and Research Assistant Emina Aruković, DVM for preparation of porcine skin.

Conflict of Interest

Authors have no conflicts of interest to disclose.


  1. 1.
    Teo, A.L., Shearwood, C., Ng, K.C., Liu, J., Moochhala, S.: Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B 132(1–2), 151–154 (2006)CrossRefGoogle Scholar
  2. 2.
    Paudel, K.S., Milewski, M., Swadley, C.L., Brogden, N.K., Ghosh, P., Stinchcomb, A.L.: Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv. 1(1), 109–131 (2010)CrossRefGoogle Scholar
  3. 3.
    Vranić, E., Tucak, A., Vrabac, Dž., Rahić, O., Elezović, A., Hadžiabdić, J.: Microneedle-assisted delivery of NSAIDs. In: Badnjevic, A. (eds.) CMBEBIH 2017. IFMBE Proceedings, vol. 62, pp. 311–316. Springer, Singapore (2017)Google Scholar
  4. 4.
    Alexander, A., Dwivedi, S., Ajazuddin, Giri, T.K., Saraf, S., Saraf, S., et al.: Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control Release 164, 26–40 (2012)CrossRefGoogle Scholar
  5. 5.
    Gill, H.S., Prausnitz, M.R.: Coating formulation for microneedles. Pharm. Res. 24(7), 1369–1380 (2007)CrossRefGoogle Scholar
  6. 6.
    Hadgraft, J., Du Plessis, J., Goosen, C.: The selection of non-steroidal anti-inflammatory agents for dermal delivery. Int. J. Pharm. 207(1–2), 31–37 (2000)CrossRefGoogle Scholar
  7. 7.
    Ita, K.: Transdermal delivery of drugs with microneedles: strategies and outcomes. J. Drug Deliv. Sci. Tech. 29, 16–23 (2015)CrossRefGoogle Scholar
  8. 8.
    Yadav, D.J., Vaidya, K.A., Kulkarni, P.R., Raut, R.A.: Microneedles: promising technique for transdermal drug delivery. Int. J. Pharm. Bio Sci. 2(1), 684–708 (2010)Google Scholar
  9. 9.
    Roxhed, N., Samel, B., Nordquist, L., Griss, P., Stemme, G.: Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans. Biomed. Eng. 55(3), 1063–1071 (2008)CrossRefGoogle Scholar
  10. 10.
    Henry, S., McAllister, V.D., Mark, G.A., Prausnitz, P.M.: Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922–925 (1998)CrossRefGoogle Scholar
  11. 11.
    Olatunji, O., Das, D.B., Nassehi, V.: Modelling transdermal drug delivery using microneedles: effect of geometry on drug transport behaviour. J. Pharm. Sci. 101(1), 164–175 (2012)CrossRefGoogle Scholar
  12. 12.
    Haripriya, K., Chandra, K.S., Ajay, B.K.: Characterization of microchannels created by metal microneedles: formation and closure. J. List 13(3), 473–481 (2011)Google Scholar
  13. 13.
    Wilke, N., Mulcahy, A., Ye, S.-R., Morrissey, A.: Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron. J. 36(7), 650–656 (2005)CrossRefGoogle Scholar
  14. 14.
    Hartmann, X.H.M., van der Linde, P., Homburg, E.F.G.A., van Breemen, L.C.A., de Jong, A.M., Luttge, R.: Insertion process of ceramic nanoporous microneedles by means of a novel mechanical applicator design. Pharmaceutics 7(4), 503–522 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Jiang, G., Hong, W., Gao, M., Xu, B., Zhu, J., et al.: Polymeric microneedles integrated with metformin-loaded and PDA/LA-coated hollow mesoporus SiO2 for NIR-triggered transdermal delivery on diabetic rats. ACS Appl. Bio Mater. (2018) (In press)Google Scholar
  16. 16.
    Donelly, R.F., McCrudden, M.T.C., Alkilani, A.Z., Larraneta, E., McAlister, E., Courtenay, A.J., et al.: Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 9(10), 111–547 (2014)Google Scholar
  17. 17.
    Park, J.H., Allen, M.G., Prausnitz, M.R.: Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control Release 104(1), 51–66 (2005)CrossRefGoogle Scholar
  18. 18.
    Martanto, W., Moore, J.S., Cous, T., Prausnitz, M.R.: Mechanism of fluid infusion during microneedle insertion and retraction. J. Control Release 12, 357–361 (2006)CrossRefGoogle Scholar
  19. 19.
    McCrudden, M.T., McAlister, E., Courtenay, A.J., González-Vázquez, P., Singh, T.R., Donnelly, R.F.: Microneedle applications in improving skin appearance. Exp. Dermatol. 24(8), 561–566 (2015)CrossRefGoogle Scholar
  20. 20.
    Luzuriaga, M., Berry, D., Reagan, J., Smaldone, R., Gassensmith, J.: Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab. Chip 18(8), 1223–1230 (2018)CrossRefGoogle Scholar
  21. 21.
    Dardano, P., Caliò, A., Palma, V.D., Bevilacqua, M.F., Matteo, A.D., Stefano, L.D.: A photolithographic approach to polymeric microneedles array fabrication. Materials 8, 8661–8673 (2015)CrossRefGoogle Scholar
  22. 22.
    Choi, Y., Lee, S.G., Jeong, J.H., Lee, K.M., Jeong, K.H., Yang, H., et al.: Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. Int. J. Nanomed. 1, 289 (2013)Google Scholar
  23. 23.
    Ceyssens, F., Chaudhri, B.P., Hoof, C.V., Puers, R.: Fabrication process for tall, sharp, hollow, high aspect ratio polymer microneedles on a platform. J. Micromech. Microeng. 23, 075–023 (2013)CrossRefGoogle Scholar
  24. 24.
    Kim, H., Theogarajan, L.S., Pennathur, S.A.: Repeatable and scalable fabrication method for hollow silicon microneedles. J. Micromech. Microeng. 28, 035–007 (2018)CrossRefGoogle Scholar
  25. 25.
    Wang, Q.L., Zhu, D.D., Liu, X.B., Chen, B.Z., Guo, X.D.: Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Sci Rep. 6, 28755 (2016)CrossRefGoogle Scholar
  26. 26.
    Ventola, C.L: Medical applications for 3D printing: current and projected uses. P&T 39(10), 704–711 (2014)Google Scholar
  27. 27.
    Pedde, R.D., Mirani, B., Navaei, A., Styan, T., Wong, S., Mehrali, M., et al.: Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 29, 1–27 (2017)CrossRefGoogle Scholar
  28. 28.
    Jassim-Jaboori, A., Oyewumi, M.O.: 3D printing technology in pharmaceutical drug delivery: prospects and challenges. J. Biomol. Res. Ther. 04(4), 4 (2015)Google Scholar
  29. 29.
    Goole, J., Karim, A.: 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int. J. Pharm. 499(1–2), 376–394 (2016)CrossRefGoogle Scholar
  30. 30.
    Economidoua, S.N., Lamproua, D.A., Douroumisb, D.: 3D printing applications for transdermal drug delivery. Int. J. Pharm. 544(2), 415–424 (2018)CrossRefGoogle Scholar
  31. 31.
    Gill, H.S, Prausnitz, R.: Coated microneedles for transdermal delivery. J. Control Release 117(2), 227–237 (2007)CrossRefGoogle Scholar
  32. 32.
    Gidlof, Z.: Coating of bioceramic microneedles, Degree Thesis, Umeå University, Pharmacology and Clinical Neurosicience, Umeå (2017)Google Scholar
  33. 33.
    Haj-Ahmad, R., Khan, H., Arshad, M.S., Rasekh, M., Hussain, A., Walsh, S., Li, X., Chang, M.W., Ahmad, Z.: Microneedle coating techniques for transdermal drug delivery. Pharmaceutics 7(4), 486–502 (2015)CrossRefGoogle Scholar
  34. 34.
    Chen, J., Qiu, Y., Zhang, S., Yang, G., Gao, Y.: Controllable coating of microneedles for transdermal drug delivery. Drug Dev. Ind. Pharm. 41(3), 415–422 (2013)CrossRefGoogle Scholar
  35. 35.
    Banski, K.L., Mittermayr, R., Herdon, D.N., Norbury, W.B., Masters, O.E., Hofmann, M.: A porcine model of full-thickness burn, excision and skin autografting. Burns 34(8), 1119–1127 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mirela Camović
    • 1
    Email author
  • Amila Biščević
    • 1
  • Iman Brčić
    • 1
  • Kana Borčak
    • 1
  • Sadžida Bušatlić
    • 1
  • Nejra Ćenanović
    • 1
  • Anida Dedović
    • 1
  • Alen Mulalić
    • 1
  • Maida Osmanlić
    • 2
  • Merima Sirbubalo
    • 3
  • Amina Tucak
    • 3
  • Edina Vranić
    • 3
  1. 1.Faculty of PharmacyUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Faculty of Mechanical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina
  3. 3.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations