Advertisement

Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments

  • Johannes H. P. Hackstein
  • Scott E. Baker
  • Jaap J. van Hellemond
  • Aloysius G. M. TielensEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

Fungi form a very diverse group of eukaryotes. The majority of investigated fungi contain mitochondria and are capable of oxidative phosphorylation. On the other hand, anaerobically functioning fungi, found as symbionts in the gastrointestinal tract of many herbivorous mammals, contain hydrogenosomes. These organelles of mitochondrial origin are also found in multiple classes of anaerobically functioning protists. Hydrogenosomes produce hydrogen as an end product of a fermentative energy metabolism and produce ATP by substrate-level phosphorylation. However, the hydrogenosomes of the anaerobic fungi Neocallimastix and Piromyces differ from the hydrogenosomes of trichomonads and those of anaerobic ciliates in the way they convert pyruvate to acetyl-CoA. The hydrogenosomes of these anaerobic fungi use pyruvate:formate lyase (PFL), whereas trichomonads use pyruvate-ferredoxin oxidoreductase (PFO), and anaerobic ciliates use pyruvate dehydrogenase (PDH) for the degradation of pyruvate. The characteristics and role of these hydrogenosomes in the energy metabolism of anaerobic fungi are discussed.

References

  1. Akhmanova A, Voncken FGJ, Harhangi H, Hosea KM, Vogels GD, Hackstein JHP (1998) Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Mol Microbiol 30(5):1017–1027CrossRefGoogle Scholar
  2. Akhmanova A, Voncken FGJ, Hosea KM, Harhangi H, Keltjens JT, den Camp HJMO, Vogels GD, Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32(5):1103–1114CrossRefGoogle Scholar
  3. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6(8):769–779CrossRefGoogle Scholar
  4. Andersson JO, Sjogren AM, Davis LAM, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13(2):94–104CrossRefGoogle Scholar
  5. Arnau J, Jorgensen F, Madsen SM, Vrang A, Israelsen H (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J Bacteriol 180(12):3049–3055PubMedPubMedCentralGoogle Scholar
  6. Artzi L, Bayer EA, Moraïs S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15:83–95CrossRefGoogle Scholar
  7. Bauchop T (1979) Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38(1):148–158PubMedPubMedCentralGoogle Scholar
  8. Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51(5):1389–1399CrossRefGoogle Scholar
  9. Brownlee AG (1989) Remarkably at-rich genomic dna from the anaerobic fungus Neocallimastix. Nucleic Acids Res 17(4):1327–1335CrossRefGoogle Scholar
  10. Brownlee AG (1994) The nucleic acids of anaerobic fungi. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. Biology, ecology, and function. Marcel Dekker, New York, pp 241–256Google Scholar
  11. Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD(+)-dependent acetaldehyde alcohol-dehydrogenase from Entamoeba histolytica. Biochem J 303:743–748CrossRefGoogle Scholar
  12. Bullerwell CE, Lang BF (2005) Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 8(4):362–369CrossRefGoogle Scholar
  13. Chen HZ, Li XL, Ljungdahl LG (1995) Biomass degrading enzymes from anaerobic rumen fungi. SAAS Bull Biochem Biotechnol 8:1–6PubMedGoogle Scholar
  14. Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64(2):281–315CrossRefGoogle Scholar
  15. Dan MX, Wang CC (2000) Role of alcohol dehydrogenase E (ADHE) in the energy metabolism of Giardia lamblia. Mol Biochem Parasitol 109(1):25–36CrossRefGoogle Scholar
  16. Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ (2002) An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296(1–2):45–52CrossRefGoogle Scholar
  17. Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O’Malley MA, Griffith GW, Smidt H (2017) PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol 8:1657CrossRefGoogle Scholar
  18. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440(7084):623–630CrossRefGoogle Scholar
  19. Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38(3):446–455CrossRefGoogle Scholar
  20. Fontaine L, Meynial-Salles I, Girbal L, Yang XH, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184(3):821–830CrossRefGoogle Scholar
  21. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25(7):319–324CrossRefGoogle Scholar
  22. Gelius-Dietrich G, Henze K (2004) Pyruvate formate lyase (PFL) and PFL activating enzyme in the chytrid fungus Neocallimastix frontalis: a free-radical enzyme system conserved across divergent eukaryotic lineages. J Eukaryot Microbiol 51(4):456–463CrossRefGoogle Scholar
  23. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17CrossRefGoogle Scholar
  24. Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FGJ (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7(11):441–447CrossRefGoogle Scholar
  25. Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zool Anal Complex Syst 104(3–4):290–302Google Scholar
  26. Hackstein JHP, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50(4):225–245CrossRefGoogle Scholar
  27. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:17087CrossRefGoogle Scholar
  28. Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT, van Dijken JP, Jetten MS, Pronk JT, Op den Camp HJ (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141CrossRefGoogle Scholar
  29. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547CrossRefGoogle Scholar
  30. Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc B Lond B Biol Sci 365:713–727CrossRefGoogle Scholar
  31. Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16(9):1280–1291CrossRefGoogle Scholar
  32. Howe CJ (2008) Cellular evolution: what’s in a mitochondrion? Curr Biol 18:R429–R431CrossRefGoogle Scholar
  33. Julliand V, Riondet C, de Vaux A, Alcaraz G, Fonty G (1998) Comparison of metabolic activities between Piromyces citronii, and equine fungal species, and Piromyces communis, a ruminal species. Anim Feed Sci Technol 70(1–2):161–168CrossRefGoogle Scholar
  34. Kameshwar AKS, Qin W (2018) Genome wide analysis reveals the extrinsic cellulolytic and biohydrogen generating abilities of Neocallimastigomycota fungi. J Genomics 6:74–87CrossRefGoogle Scholar
  35. Kessler D, Leibrecht I, Knappe J (1991) Pyruvate-formate-lyase-deactivase and acetyl-coa reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhe. FEBS Lett 281(1–2):59–63CrossRefGoogle Scholar
  36. Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymatic ADHE protein of Escherichia coli. J Biol Chem 267(25):18073–18079PubMedGoogle Scholar
  37. Li Y, Jin W, Mu C, Cheng Y, Zhu W (2017) Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate. J Basic Microbiol 57:933–940CrossRefGoogle Scholar
  38. Lipinski KA, Kaniak-Golik A, Golik P (2010) Maintenance and expression of the S. cerevisiae mitochondrial genome–from genetics to evolution and systems biology. Biochim Biophys Acta 1797:1086–1098CrossRefGoogle Scholar
  39. Luo QW, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone spring (Oklahoma) Appl. Environ Microbiol 71(10):6175–6184CrossRefGoogle Scholar
  40. Maguire F, Richards TA (2014) Organelle evolution: a mosaic of ‘mitochondrial’ functions. Curr Biol 24:R518–R520CrossRefGoogle Scholar
  41. Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17CrossRefGoogle Scholar
  42. Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta-Mol Basis Dis 1762(2):140–147CrossRefGoogle Scholar
  43. Marvin-Sikkema FD, Richardson AJ, Stewart CS, Gottschal JC, Prins RA (1990) Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl Environ Microbiol 56:3793–3797PubMedPubMedCentralGoogle Scholar
  44. Marvin-Sikkema FD, Gomes TMP, Grivet JP, Gottschal JC, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose-metabolism of Neocallimastix sp L2. Arch Microbiol 160(5):388–396CrossRefGoogle Scholar
  45. Marvin-Sikkema FD, Driessen AJM, Gottschal JC, Prins RA (1994) Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix – evidence for a functional-relationship with mitochondria. Mycol Res 98:205–212CrossRefGoogle Scholar
  46. Müller M (1998) Enzymes and compartmentation of core energy metabolism of anaerobic protists – a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. The Systematics Association, Special Volume Series 56. Kluwer Academic, Dordrecht, pp 109–132Google Scholar
  47. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495CrossRefGoogle Scholar
  48. Munn EA, Orpin CG, Greenwood CA (1988) The ultrastructure and possible relationships of 4 obligate anaerobic chytridiomycete fungi from the rumen of sheep. Biosystems 22:67–81CrossRefGoogle Scholar
  49. Nicholson MJ, Theodorou MK, Brookman JL (2005) Molecular analysis of the anaerobic rumen fungus Orpinomyces – insights into an AT-rich genome. Microbiology (UK) 151:121–133CrossRefGoogle Scholar
  50. O’Fallon JV, Wright RW, Calza RE (1991) Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochem J 274:595–599CrossRefGoogle Scholar
  51. Orpin CG (1975) Studies on rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262CrossRefGoogle Scholar
  52. Orpin CG (1977) Occurrence of chitin in cell-walls of rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J Gen Microbiol 99:215–218CrossRefGoogle Scholar
  53. Peng X, Swift CL, Theodorou MK, O’Malley MA (2018) Methods for genomic characterization and maintenance of anaerobic fungi. In: Fungal genomics. Humana, New York, pp 53–67CrossRefGoogle Scholar
  54. Ragan MA, Chapman DJ (1978) A biochemical phylogeny of the protists. Academic, New YorkGoogle Scholar
  55. Sánchez LB (1998) Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch Biochem Biophys 354:57–64CrossRefGoogle Scholar
  56. Sawers G, Watson G (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29(4):945–954CrossRefGoogle Scholar
  57. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301(5638):1359–1361CrossRefGoogle Scholar
  58. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207–13212CrossRefGoogle Scholar
  59. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O’Malley MA (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195CrossRefGoogle Scholar
  60. Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 370:20140326CrossRefGoogle Scholar
  61. Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29(9):1955–1979CrossRefGoogle Scholar
  62. Tielens AGM, van Hellemond JJ (2007) Anaerobic mitochondria: properties and origins. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 85–103CrossRefGoogle Scholar
  63. Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152. Part 2CrossRefGoogle Scholar
  64. van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231CrossRefGoogle Scholar
  65. Van der Giezen M, Sjollema KA, Artz RRE, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408(2):147–150CrossRefGoogle Scholar
  66. Voncken F (2001) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. PhD Thesis, University of Nijmegen. ISBN 90-9014868-xGoogle Scholar
  67. Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP (2002a) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44(6):1441–1454CrossRefGoogle Scholar
  68. Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002b) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284(1–2):103–112CrossRefGoogle Scholar
  69. Wang HC, Chen YC, Hseu RS (2014) Purification and characterization of a cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. Biochem Biophys Res Commun 45:190–195CrossRefGoogle Scholar
  70. Wei YQ, Yang HJ, Long RJ, Wang ZY, Cao BB, Ren QC, Wu TT (2017) Characterization of natural co-cultures of Piromyces with Methanobrevibacter ruminantium from yaks grazing on the Qinghai-Tibetan Plateau: a microbial consortium with high potential in plant biomass degradation. AMB Exp 7:160CrossRefGoogle Scholar
  71. Wilken SE, Saxena M, Petzold LR, O’Malley MA (2018) In silico identification of microbial partners to form consortia with anaerobic fungi. Processes 6(1):7CrossRefGoogle Scholar
  72. Williams AG, Withers SE, Naylor GE, Joblin KN (1994) Interactions between the rumen chytrid fungi and other microorganisms. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. Biology, ecology, and function. Marcel Dekker, New York, pp 191–227Google Scholar
  73. Wilson CA, Wood TM (1992) The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37:125–129CrossRefGoogle Scholar
  74. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes H. P. Hackstein
    • 1
  • Scott E. Baker
    • 2
  • Jaap J. van Hellemond
    • 3
  • Aloysius G. M. Tielens
    • 3
    • 4
    Email author
  1. 1.Faculty of ScienceIWWR, Radboud University NijmegenNijmegenThe Netherlands
  2. 2.Earth and Biological Sciences Directorate Pacific Northwest National Laboratory, Environmental Molecular Science DivisionBiosystems Dynamics and Simulation GroupRichlandUSA
  3. 3.Department of Medical Microbiology and Infectious DiseasesErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
  4. 4.Faculty of Veterinary Medicine, Department of Biochemistry and Cell BiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations