Advertisement

A Coarse-Grained Representation for Discretizable Distance Geometry with Interval Data

  • Antonio Mucherino
  • Jung-Hsin LinEmail author
  • Douglas S. Gonçalves
Conference paper
  • 662 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11465)

Abstract

We propose a coarse-grained representation for the solutions of discretizable instances of the Distance Geometry Problem (DGP). In several real-life applications, the distance information is not provided with high precision, but an approximation is rather given. We focus our attention on protein instances where inter-atomic distances can be either obtained from the chemical structure of the molecule (which are exact), or through experiments of Nuclear Magnetic Resonance (which are generally represented by real-valued intervals). The coarse-grained representation allows us to extend a previously proposed algorithm for the Discretizable DGP (DDGP), the branch-and-prune (BP) algorithm. In the standard BP, atomic positions are fixed to unique positions at every node of the search tree: we rather represent atomic positions by a pair consisting of a feasible region, together with a most-likely position for the atom in this region. While the feasible region is a constant during the search, the associated position can be refined by considering the new distance constraints that appear at further layers of the search tree. To perform the refinement task, we integrate the BP algorithm with a spectral projected gradient algorithm. Some preliminary computational experiments on artificially generated instances show that this new approach is quite promising to tackle real-life DGPs.

Notes

Acknowledgments

AM and JHL wish to thank the CNRS and MoST for financial support (PRC project “Rapid NMR Protein Structure Determination and Conformational Transition Sampling by a Novel Geometrical Approach”). AM and DSG wish to thank CAPES PRINT for financial support. DSG also thanks CNPq for financial support (Grant n. 421386/2016-9).

References

  1. 1.
    Almeida, F.C.L., Moraes, A.H., Gomes-Neto, F.: An overview on protein structure determination by NMR, historical and future perspectives of the use of distance geometry methods. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications, pp. 377–412. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-5128-0_18CrossRefzbMATHGoogle Scholar
  2. 2.
    Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 27, 439–452 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berman, H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  5. 5.
    Billinge, S.J.L., Duxbury, Ph.M., Gonçalves, D.S., Lavor, C., Mucherino, A.: Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures. Ann. Oper. Res. (2018, to appear)Google Scholar
  6. 6.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cassioli, A., et al.: An algorithm to enumerate all possible protein conformations verifying a set of distance restraints. BMC Bioinform. 16, 23 (2015). p. 15CrossRefGoogle Scholar
  8. 8.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, Hoboken (1988)zbMATHGoogle Scholar
  9. 9.
    de Leeuw, J.: Convergence of the majorization method for multidimensional scaling. J. Classif. 5, 163–180 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)CrossRefGoogle Scholar
  11. 11.
    Glunt, W., Hayden, T.L., Raydan, M.: Preconditioners for distance matrix algorithms. J. Comput. Chem. 15, 227–232 (1994)CrossRefGoogle Scholar
  12. 12.
    Gonçalves, D.S., Mucherino, A.: Optimal partial discretization orders for discretizable distance geometry. Int. Trans. Oper. Res. 23(5), 947–967 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gonçalves, D.S., Mucherino, A., Lavor, C.: An adaptive branching scheme for the Branch & Prune algorithm applied to distance geometry. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS 2014), Workshop on Computational Optimization (WCO 2014), Warsaw, Poland, pp. 463–469 (2014)Google Scholar
  14. 14.
    Gonçalves, D.S., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Global Optim. 69(3), 525–545 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gramacho, W., Mucherino, A., Lin, J.-H., Lavor, C.: A new approach to the discretization of multidimensional scaling. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS 2016), Workshop on Computational Optimization (WCO 2016), Gdansk, Poland, pp. 601–609 (2016)Google Scholar
  16. 16.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Global Optim. 56(3), 855–871 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liberti, L., Lavor, C., Maculan, N.: A Branch-and-Prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geometry problem seems easier on proteins. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications, pp. 47–60. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-5128-0_3CrossRefzbMATHGoogle Scholar
  21. 21.
    Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18(1), 33–51 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mucherino, A.: On the identification of discretization orders for distance geometry with intervals. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 231–238. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40020-9_24CrossRefzbMATHGoogle Scholar
  23. 23.
    Mucherino, A.: A pseudo de Bruijn graph representation for discretization orders for distance geometry. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 514–523. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16483-0_50CrossRefGoogle Scholar
  24. 24.
    Mucherino, A., Gonçalves, D.S.: An approach to dynamical distance geometry. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 821–829. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68445-1_94CrossRefGoogle Scholar
  25. 25.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mucherino, A., Omer, J., Hoyet, L., Giordano, P.R., Multon, F.: An application-based characterization of dynamical distance geometry problems. Optim. Lett. (2018, to appear)Google Scholar
  27. 27.
    Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  28. 28.
    Sit, A., Wu, Z.: Solving a generalized distance geometry problem for protein structure determination. Bull. Math. Biol. 73, 2809–2836 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sulkowska, J.I., Morcos, F., Weigt, M., Hwa, T., Onuchic, J.N.: Genomics-aided structure prediction. Proc. Natl. Acad. Sci. (PNAS) U.S.A. 109(26), 10340–10345 (2012)CrossRefGoogle Scholar
  30. 30.
    Zhang, H., Hager, W.W.: A nonmonotone line search technique and its applications to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio Mucherino
    • 1
  • Jung-Hsin Lin
    • 2
    Email author
  • Douglas S. Gonçalves
    • 3
  1. 1.IRISAUniversity of Rennes 1RennesFrance
  2. 2.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan
  3. 3.DM-CFMFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations