Advertisement

Local Descent for Temporal Logic Falsification of Cyber-Physical Systems

  • Shakiba YaghoubiEmail author
  • Georgios Fainekos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11267)

Abstract

One way to analyze Cyber-Physical Systems is by modeling them as hybrid automata. Since reachability analysis for hybrid nonlinear automata is a very challenging and computationally expensive problem, in practice, engineers try to solve the requirements falsification problem. In one method, the falsification problem is solved by minimizing a robustness metric induced by the requirements. This optimization problem is usually a non-convex non-smooth problem that requires heuristic and analytical guidance to be solved. In this paper, functional gradient descent for hybrid systems is utilized for locally decreasing the robustness metric. The local descent method is combined with Simulated Annealing as a global optimization method to search for unsafe behaviors.

Keywords

Falsification Hybrid systems Optimization 

Notes

Acknowledgments

This work was partially supported by the NSF awards CNS-1319560, CNS 1350420, IIP-1361926, and the NSF I/UCRC Center for Embedded Systems.

References

  1. 1.
    Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based approaches for verification of embedded control systems: an overview of traditional and advanced modeling, testing, and verification techniques. IEEE Control Syst. Mag. 36(6), 45–64 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  3. 3.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT - 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30206-3_12CrossRefzbMATHGoogle Scholar
  4. 4.
    Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 12(s2), 95 (2013)Google Scholar
  5. 5.
    Fainekos, G., Pappas, G.: Robustness of temporal logic specifications for continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Abbas, H., Winn, A., Fainekos, G., Julius, A.A.: Functional gradient descent method for metric temporal logic specifications. In: 2014 American Control Conference, pp. 2312–2317. IEEE (2014)Google Scholar
  7. 7.
    Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)Google Scholar
  8. 8.
    Yaghoubi, S., Fainekos, G.: Hybrid approximate gradient and stochastic descent for falsification of nonlinear systems. In: American Control Conference (2017)Google Scholar
  9. 9.
    Pant, Y.V., Abbas, H., Mangharam, R.: Control using the smooth robustness of temporal logic. Technical report MLAB paper 98, University of Pennsylvania Scholarly Commons (2017)Google Scholar
  10. 10.
    Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71493-4_16CrossRefGoogle Scholar
  11. 11.
    Goebel, R., Teel, A.R.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42(4), 573–587 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dokhanchi, A., Hoxha, B., Fainekos, G.: Metric interval temporal logic specification elicitation and debugging. In: 13th ACM-IEEE International Conference on Formal Methods and Models for System Design, September 2015Google Scholar
  13. 13.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19835-9_21CrossRefzbMATHGoogle Scholar
  14. 14.
    Abbas, H., Fainekos, G.: Computing descent direction of MTL robustness for non-linear systems. In: 2013 American Control Conference, pp. 4405–4410. IEEE (2013)Google Scholar
  15. 15.
    Winn, A., Julius, A.A.: Safety controller synthesis using human generated trajectories. IEEE Trans. Autom. Control 60(6), 1597–1610 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14295-6_17CrossRefGoogle Scholar
  18. 18.
    Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting, CEGAR-based falsification for hybrid systems. In: Proceedings of the 14th International Conference on Embedded Software, p. 5. ACM (2014)Google Scholar
  19. 19.
    Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J.: A trajectory splicing approach to concretizing counterexamples for hybrid systems. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE (2013)Google Scholar
  20. 20.
    Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17524-9_10CrossRefGoogle Scholar
  21. 21.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 368–382. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00768-2_31CrossRefzbMATHGoogle Scholar
  22. 22.
    Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21668-3_21CrossRefGoogle Scholar
  23. 23.
    Abbas, H., Fainekos, G.: Linear hybrid system falsification with descent. arXiv preprint arXiv:1105.1733 (2011)
  24. 24.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15297-9_9CrossRefzbMATHGoogle Scholar
  25. 25.
    Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth robustness of temporal logic (2017)Google Scholar
  26. 26.
    Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00602-9_12CrossRefzbMATHGoogle Scholar
  27. 27.
    Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using S-TaLiRo. In: Proceedings of the American Control Conference (2012)Google Scholar
  28. 28.
    Strathmann, T., Oehlerking, J.: Verifying properties of an electro-mechanical braking system. In: Frehse, G., Althoff, M. (eds.) ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems. EPiC Series in Computing, vol. 34, pp. 49–56. EasyChair (2015)Google Scholar
  29. 29.
    Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G., Maahs, D.: Model-based falsification of an artificial pancreas control system. In: Medical Cyber Physical Systems Workshop (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations