Geostatistical Estimation Methods: Kriging

  • Y. Z. Ma


This chapter presents geostatistical estimation methods for modeling continuous variables. These include several kriging techniques, namely, simple kriging, ordinary kriging, kriging with varying mean, collocated cokriging, and factorial kriging. Geoscientists who want only a basic understanding of kriging estimation can skip the advanced kriging methods, but simple kriging is necessary for understanding stochastic simulation. Similarly, collocated cokriging will be useful for understanding collocated cosimulation. Stochastic (co)simulation is presented in Chap.  17.


  1. Besag, J., & Mondal, D. (2005). First-order intrinsic autoregressions and the de Wijs process. Biometrika, 92(4), 909–920.MathSciNetCrossRefGoogle Scholar
  2. Chauvet, P. (1989). Quelques aspects de l’analyse structural des FAI-k a 1-dimension. In M. Armstrong (Ed.), Geostatistics (pp. 139–150). Dordrecht: Kluwer.CrossRefGoogle Scholar
  3. Doyen, P. M., den Boer, L. D., & Pillet, W. R. (1996). Seismic porosity mapping in the Ekofisk field using a new form of collocated Cokriging. Society of Petroleum Engineers.
  4. Du, C., Zhang, X., Ma, Y. Z., Kaufman, P., Melton, B., & Gowelly S. (2011). An integrated modeling workflow for shale gas reservoirs, In Y. Z. Ma & P. La Pointe (Eds.), Uncertainty analysis and reservoir Modeling (AAPG Memoir 96).Google Scholar
  5. Haynsworth, E. V. (1968). On the Schur complement, Basel mathematical notes, #BNB 20, 17p.Google Scholar
  6. Journel, A. G. (1989). Fundamentals of geostatistics in five lessons. Short course in geology (Vol. 8). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  7. Journel, A. (1992). Comment on “positive definiteness is not enough”. Mathematical Geology, 24, 145147.CrossRefGoogle Scholar
  8. Ma, Y. Z, & Myers, D. (1994). Simple and ordinary factorial cokriging. In A. G. Fabbri & J. J. Royer (Eds.), 3rd CODATA conference on geomathematics and geostatistics. Sci. de la Terre, Sér. Inf., 32:49–62, Nancy, France.Google Scholar
  9. Ma, Y. Z., & Royer, J. J. (1988). Local geostatistical filtering: Application to remote sensing. Sci de la Terre: Sér. Inf. 27:17–36, Nancy, France.Google Scholar
  10. Ma, Y. Z., & Royer, J. J. (1994). Optimal filtering for non-stationary images. In IEEE 8th workshop on IMDSP (pp. 88–89).Google Scholar
  11. Ma, Y. Z., Seto, A., & Gomez, E. (2008). Frequentist meets spatialist: A marriage made in reservoir characterization and modeling: SPE 115836, SPE ATCE, Denver, CO.Google Scholar
  12. Ma, Y. Z., Royer, J. J., Wang, H., Wang, Y., & Zhang, T. (2014). Factorial kriging for multiscale modeling. Journal of South African Institute of Mining and Metallurgy, 114, 651–657.Google Scholar
  13. Matheron, G. (1971). The theory of regionalized variables and their applications: Textbook of Center of Geostatistics. Paris: Fontainebleau, 212p.Google Scholar
  14. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.MathSciNetCrossRefGoogle Scholar
  15. Matheron, G. (1982). Pour une analyse krigeante des données régionalisées. Centre de Geostatistique, Research report N-732.Google Scholar
  16. Matheron, G. (1989). Estimating and choosing – An essay on probability in practice. Berlin: Springer.CrossRefGoogle Scholar
  17. Olea, R. A. (1991). Geostatistical glossary and multilingual dictionary. New York: Oxford University Press.Google Scholar
  18. Papoulis, A. (1965). Probability, random variables and stochastic processes. New York: McGraw-Hill, 583p.zbMATHGoogle Scholar
  19. Reis, A. P., Sousa, A. J., da Silva, E. F., Patinha, C., & Fonseca, E. C. (2004). Combining multiple correspondence analysis with factorial kriging analysis for geochemical mapping of the gold-silver deposit at Marrancos (Portugal). Applied Geochemistry, 19(4), 623–631.CrossRefGoogle Scholar
  20. Rivoirard, J. (2001). Which models for collocated cokriging? Mathematical Geology, 33(2), 117–131.MathSciNetCrossRefGoogle Scholar
  21. Schabenberger, O., & Gotway, C. (2005). Statistical methods for spatial data analysis. Boca Raton: Chapman & Hall/CRC.zbMATHGoogle Scholar
  22. Serra, J. (1983). Image analysis and mathematical morphology. Orlando: Academic.Google Scholar
  23. Stein, M. L. (1999). Interpolation of spatial data: Some theory for kriging. New York: Springer, 247p.CrossRefGoogle Scholar
  24. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (3rd ed.). Berlin: Springer, 387p.CrossRefGoogle Scholar
  25. Wen, R., & Sinding-Larsen, R. (1997). Image filtering by factorial kriging – Sensitivity analysis and applications to Gloria side-scan sonar images. Mathematical Geology, 29(4), 433–468.CrossRefGoogle Scholar
  26. Wiener, N. (1949). Extrapolation, interpolation and smoothing of stationary time series. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  27. Xu, W., Tran, T. T., Srivastava, R. M., & Journel, A. G. (1992). Integrating seismic data in reservoir modeling: The collocated cokriging alternative: SPE 24742 (67th ed., pp. 833–842). ATCE.Google Scholar
  28. Yao, T., Mukerji, T., Journel, A., & Mavko, G. (1999). Scale matching with factorial kriging for improved porosity estimation from seismic data. Mathematical Geology, 31(1), 23–46.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Y. Z. Ma
    • 1
  1. 1.SchlumbergerDenverUSA

Personalised recommendations