Advertisement

Seismic Data Analytics for Reservoir Characterization

  • Y. Z. Ma
Chapter

Abstract

This chapter first gives an overview of the main characteristics of seismic data and basic analytics using seismic data. It then presents identifications of facies and mapping of continuous reservoir properties using seismic data through mathematical correlation-based methods. The presentation emphasizes analytics in reservoir characterization using seismic attributes. In the last two to three decades, the generation of many seismic attributes from various methods, such as amplitude versus offset (AVO), inversion, and signal analysis, has become common, making seismic attributes part of geoscience big data. There is also an increasing trend in data-analytical methods for treating attribute data. The traditional use of seismic data for structural and stratigraphic interpretations of reservoirs is presented for construction of reservoir-model frameworks in Chap.  15.

References

  1. Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative seismic interpretation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Brown, A. R. (1999). Interpretation of three-dimensional seismic data (AAPG Memoir 42) (5th ed.). Tulsa: AAPGL, 514p.Google Scholar
  3. Chen, Q., & Sidney, S. (1997). Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16, 445–450.CrossRefGoogle Scholar
  4. Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization (SEG Geophysical Developments Series No.11). Tulsa: SEG.CrossRefGoogle Scholar
  5. Dvorkin, J., Gutierrez, M., & Grana, D. (2014). Seismic reflections of rock properties. New York: Cambridge University Press.CrossRefGoogle Scholar
  6. Iske, A., & Randen, T. (Eds.). (2005). Mathematical methods and modelling in hydrocarbon exploration and production. Dordrecht: Springer.zbMATHGoogle Scholar
  7. Ma, Y. Z. (2010). Error types in reservoir characterization and management. Journal of Petroleum Science and Engineering, 72(3–4), 290–301.  https://doi.org/10.1016/j.petrol.2010.03.030.CrossRefGoogle Scholar
  8. Ma, Y. Z. (2011). Pitfalls in prediction of rock properties using multivariate analysis and regression method. Journal of Applied Geophysics, 75(2), 390–400.CrossRefGoogle Scholar
  9. Ma, Y. Z., & Gomez, E. (2015). Uses and abuses in applying neural networks for predictions in hydrocarbon resource evaluation. Journal of Petroleum Science and Engineering, 133, 66–75.CrossRefGoogle Scholar
  10. Ma, Y. Z., Gomez, E., & Luneau, B. (2017). Integrations of seismic and well-log data using statistical and neural network methods. The Leading Edge, 36(4), 324–329.CrossRefGoogle Scholar
  11. Marple, L. (1982). Frequency resolution of Fourier and maximum entropy spectral estimates. Geophysics, 47(9), 1303–1307.CrossRefGoogle Scholar
  12. Papoulis, A. (1965). Probability, random variables and stochastic processes. New York: McGraw-Hill, 583p.Google Scholar
  13. Papoulis, A. (1977). Signal analysis. New York: McGraw-Hill, 431p.Google Scholar
  14. Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Simm, R., & Bacon, M. (2014). Seismic amplitude: An interpreter’s handbook. Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  16. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (3rd ed.). Berlin: Springer, 387p.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Y. Z. Ma
    • 1
  1. 1.SchlumbergerDenverUSA

Personalised recommendations