Advertisement

Artificial Neural Network Models

  • Müştak E. YalçınEmail author
  • Tuba Ayhan
  • Ramazan Yeniçeri
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The scope of this chapter is limited with the connection structures of the biologically inspired neural networks. Many biological networks are constructed with both regular and random connections between neurons. Bioinspired systems should mimic this mixed topology of biological networks, while the artificial system is still realizable. In this chapter, we focus on cellular neural networks, which is a bioinspired network with many analog realizations. Cellular neural network models are investigated under the existence of random connections additional to its regular connections.

References

  1. 1.
    F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Books, 1962)Google Scholar
  2. 2.
    J.J. Hopfield, Neural networks and physical systems with emergent collective computational properties. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    L.O. Chua, L. Yang, Cellular neural networks: theory and applications. IEEE Trans. Circuits Syst. I 35(10), 1257–1290 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    H.R. Wilson, J.D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)CrossRefGoogle Scholar
  5. 5.
    H. Hartline, F. Ratlif, Spatial summation of inhibitory in influences in the eye of limulus, and the mutual interaction of receptor units. J. Gen. Physiol. 41, 1049–1066 (1958)CrossRefGoogle Scholar
  6. 6.
    F.H.L. Da Silva, A. Hoeks, H. Smits, L.H. Zetterberg, Model of brain rhythmic activity. Biol. Cybern. 15, 27–37 (1974)Google Scholar
  7. 7.
    W.J. Freeman, Mass Action in the Nervous System (Academic Press, New York, 1975)Google Scholar
  8. 8.
    M.K. Muezzinoglu, A. Vergara, R. Huerta, T. Nowotny, N. Rulkov, H.D.I. Abarbanel, A.I. Selverston, M.I. Rabinovich, Artifcial olfactory brain for mixture identifcation, in Neural Information Processing Systems (2008), pp. 1121–1128Google Scholar
  9. 9.
    W. Freeman, A neurobiological theory of meaning in perception. Part I: information and meaning in nonconvergent and nonlocal brain dynamics. Int. J. Bifurc. Chaos. 13(9), 2493–2511 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Watts, S. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  11. 11.
    S.I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    L.B. Vosshall, A.M. Wong, R. Axel, An olfactory sensory map in the fly brain. Cell 102(2), 147–159 (2000)CrossRefGoogle Scholar
  13. 13.
    L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 1998)Google Scholar
  14. 14.
    M.E. Yalçın, J.A.K. Suykens, J. Vandewalle, Cellular Neural Networks, Multi-scroll Chaos and Synchronization (World Scientific, 2005)Google Scholar
  15. 15.
    S. Espejo, C. Carmona, R. Dominguez-Castro, A. Rodriguez-Vazquez, CNN universal chip in CMOS technology. Int. J. Circuit Theory Appl. 24, 93–111 (1996)CrossRefGoogle Scholar
  16. 16.
    T. Roska, L. Chua, The CNN universal machine—an analogic array computer. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 40(3), 163–173 (1993)CrossRefGoogle Scholar
  17. 17.
    A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. Roca-Moreno, R. Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, S. Meana, ACE16k The third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs. IEEE Trans. Circuits Syst. I Regul. Pap. 51(5), 851–863 (2004)CrossRefGoogle Scholar
  18. 18.
    Cellular Sensory Wave Computers Laboratory: Cellular Wave Computing Library. Computer and Automation Research Institute-Hungarian Academy of Sciences (2007)Google Scholar
  19. 19.
    P. Foldesy, L. Kek, A. Zarandy, T. Roska, G. Bartfai, Fault-tolerant design of analogic CNN templates and algorithms-part I: the binary output case. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(2), 312–322 (1999)CrossRefGoogle Scholar
  20. 20.
    S. Xavier-de-Souza, M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, Toward CNN chip-specific robustness. IEEE Trans. Circuits Syst. I Regul. Pap. 51(5), 892–902 (2004)CrossRefGoogle Scholar
  21. 21.
    E. Kose, M.E. Yalcin, A new architecture for emulating CNN with template learning on FPGA, in The 16th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2018) (2018), pp. 1–4Google Scholar
  22. 22.
    M.E. Yalcin, A simple programmable autowave generator network for wave computing applications. IEEE Trans. Circuits Syst. II Express Briefs. 55(11), 1173–1177 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Yeniceri, M.E. Yalcin, Path planning on cellular nonlinear network using active wave computing technique, in Proceedings of SPIE, Bio-engineered and Bioinspired Systems IV, vol. 7365 (2009)Google Scholar
  24. 24.
    V. Kilic, M.E. Yalcin, An active wave computing based path finding approach for 3-D environment, in Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS 11) (2011), pp. 2165–2168Google Scholar
  25. 25.
    D. Watts, S. Strogatz, Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  26. 26.
    J.W. Bohland, A.A. Minai, Efficient associative memory using small-world architecture. Neurocomputing 3840, 489–496 (2001)CrossRefGoogle Scholar
  27. 27.
    K.Y.N. Tsurata, Y. Zonghuang, A. Ushida, Small-world cellular neural networks for image processing applications, in Proceedings of European Conference on Circuit Theory and Design (2003), pp. 225–228Google Scholar
  28. 28.
    T. Ayhan, M.E. Yalcin, An application of small-world cellular neural networks on odor classification. Int. J. Bifurc. Chaos. 22(1), 1–12 (2012)CrossRefGoogle Scholar
  29. 29.
    T. Ayhan, M.E. Yalcin, Randomly reconfigurable cellular neural network, in Proceedings of the 20th European Conference on Circuit Theory and Design (ECCTD11) (2011), pp. 625–628Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Müştak E. Yalçın
    • 1
    Email author
  • Tuba Ayhan
    • 1
  • Ramazan Yeniçeri
    • 2
  1. 1.Department of Electronics and Telecommunications EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.Aeronautical EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations