Advertisement

Electrical Conductivity and 7Li NMR Spin-Lattice Relaxation in Amorphous, Nano- and Microcrystalline Li2O-7GeO2

  • O. Nesterov
  • M. Trubitsyn
  • O. Petrov
  • M. Vogel
  • M. Volnianskii
  • M. Koptiev
  • S. Nedilko
  • Ya. Rybak
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

Differential scanning calorimetry showed that on heating Li2O-7GeO2 glass crystallized in stages. X-ray phase analysis and atomic force microscopy were used to study the structure and morphology of the phase states obtained at glass devitrification. It was shown that glass devitrified through an intermediate state in which the sample volume was occupied by nanometer-sized ordered phase nuclei with Li2Ge4O9 and Li2Ge7O15 structures surrounded by an amorphous medium. Further heating resulted in complete sample crystallization and transformation of nanometer-sized nuclei into micrometer-sized Li2Ge7O15 crystallites. It was shown that in comparison with amorphous and completely crystallized polycrystalline states, the intermediate nanocrystalline state has an increased electrical conductivity σ. Complete crystallization on heating was accompanied by sharp and irreversible decrease of σ. Charge transfer in amorphous, nano- and microcrystalline states of Li2O-7GeO2 composition was associated with motion of lithium ions which were weakly bound to the germanium-oxygen structural framework. Complex impedance spectra were studied in the glass, intermediate and polycrystalline states of Li2O-7GeO2. It was shown that the hodographs for the intermediate nanocrystalline state reflected charge transfer within the ordered nuclei and the embedding amorphous medium. The results of conductivity and impedance spectra measurements were supplemented by 7Li NMR spin-lattice relaxation studies. Comparative analysis of the data of electrical properties measurements and NMR relaxation studies gave evidence that increased conductivity of the intermediate nanocrystalline state resulted from high mobility of the Li+ ions.

Keywords

Ionic conduction Lithium heptagermanate Glass Nanocrystals Impedance spectra NMR spin-lattice relaxation 

References

  1. 1.
    Maier J (2004) Ionic transport in nano-sized systems. J Solid State Ionics 175:7–12.  https://doi.org/10.1016/j.ssi.2004.09.051 CrossRefGoogle Scholar
  2. 2.
    Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. J Nat Mater 4(11):805–815.  https://doi.org/10.1038/nmat1513 ADSCrossRefGoogle Scholar
  3. 3.
    Murthy MK (1964) Studies in germanium oxide systems: I, phase equilibria in the system Li2O–GeO2. J Am Ceram Soc 47(7):328–331.  https://doi.org/10.1111/j.1151-2916.1964.tb14433.x CrossRefGoogle Scholar
  4. 4.
    Haussuhl S, Wallrafen F, Recker K, Eckstein J (1980) Growth, elastic properties and phase transition of orthorhombic Li2Ge7O15. Z Kristallogr 153:329–337Google Scholar
  5. 5.
    Vollenke H, Wittman A, Nowotny H (1970) Die kristall-structure des lithiumhepttagermanats Li2Ge7O15. Monatch Chem 101:46–45CrossRefGoogle Scholar
  6. 6.
    Iwata Y, Shibuya I, Wada M, Sawada A, Ishibashi Y (1987) Neutron diffraction study of structural phase transition in ferroelectric Li2Ge7O15. J Phys Soc Jpn 56(7):2420–2427.  https://doi.org/10.1143/JPSJ.56.2420 ADSCrossRefGoogle Scholar
  7. 7.
    Ilyushin GD, Dem’yanets LN (2000) Crystal chemistry of germanates: characteristic structural features of Li, Ge-germanates. Crystallography Rep 45(4):626–632.  https://doi.org/10.1134/1.1306574 ADSCrossRefGoogle Scholar
  8. 8.
    Liebert BE, Huggins RA (1976) Ionic conductivity of Li4GeO4, Li2GeO3 and Li2Ge7O15. Mat Res Bull 11(5):533–538.  https://doi.org/10.1016/0025-5408(76)90235-X CrossRefGoogle Scholar
  9. 9.
    Volnyanskii MD, Trubitsyn MP, Obaidat YAH (2008) Anisotropy of the electrical conductivity of lithium heptagermanate crystals. Phys Solid State 50(3):422–424.  https://doi.org/10.1134/S1063783408030049 ADSCrossRefGoogle Scholar
  10. 10.
    Trubitsyn MP, Volnyanskii MD, Obaidat YAH (2008) Ionic conduction in Li2Ge7O15 crystals doped with Cr and Mn ions. Phys Solid State 50(7):1234–1237.  https://doi.org/10.1134/S106378340807007X ADSCrossRefGoogle Scholar
  11. 11.
    Volnyanskii MD, Plyaka SN, Trubitsyn MP, Obaidat YAH (2012) Ion conduction and space-charge polarization processes in Li2Ge7O15 crystals. Phys Solid State 54(3):499–503.  https://doi.org/10.1134/S1063783412030353 ADSCrossRefGoogle Scholar
  12. 12.
    Volnianskii M, Plyaka S, Trubitsyn M, Obaidat Y (2014) Frequency dispersion of conductivity and complex impedance in Li2Ge7O15 single crystal. Ferroelectrics 462(1):74–79.  https://doi.org/10.1080/00150193.2014.890880 CrossRefGoogle Scholar
  13. 13.
    Pernice P, Aronne A, Marotta M (1992) The non-isothermal devitrification of lithium tetragermanate glass. Mater Chem Phys 30(3):195–198.  https://doi.org/10.1016/0254-0584(92)90223-u CrossRefGoogle Scholar
  14. 14.
    Pernice P, Aronne A, Marotta M (1992) Crystallizing phases and kinetics of crystal growth in Li2O-19GeO2 glass. J Mater Sci Lett 11:427–429CrossRefGoogle Scholar
  15. 15.
    Marotta A, Pernice P, Aronne A, Catauro M (1993) The non-isothermal devitrification of lithium germanate glasses. J Ther Anal 40(1):181–188.  https://doi.org/10.1007/BF02546568 CrossRefGoogle Scholar
  16. 16.
    Aronne A, Catauro M, Pernice P, Marotta A (1993) Gel synthesis and crystallization of Li2O - 7GeO2 glass powders. Thermochim Acta 216:169–176CrossRefGoogle Scholar
  17. 17.
    Volnyanskii MD, Nesterov AA, Trubitsyn MP (2012) Thermal and electrical properties of glass-ceramics based on lithium heptagermanate. Phys Solid State 54(5):945–946.  https://doi.org/10.1134/S1063783412050459 ADSCrossRefGoogle Scholar
  18. 18.
    Nesterov OO, Trubitsyn MP, Volnyanskii DM (2015) Metastable state of the Li2O–11.5GeO2 glass ceramics with a high electrical conductivity. Phys Solid State 57(4):683–688.  https://doi.org/10.1134/S1063783415040204 ADSCrossRefGoogle Scholar
  19. 19.
    Volnianskii MD, Nesterov OO, Trubitsyn MP (2014) Devitrification of the Li2O – x(GeO2) glass. Ferroelectrics 466(1):126–130.  https://doi.org/10.1080/00150193.2014.895173 CrossRefGoogle Scholar
  20. 20.
    Nesterov OO, Trubitsyn MP, Nedilko SG, Volnianskii MD, Plyaka SM, Rybak YO (2018) Ionic conductivity in multiphase Li2O-7GeO2 compounds. Acta Phys Polonica 133(4):892–896.  https://doi.org/10.12693/APhysPolA.133.892 CrossRefGoogle Scholar
  21. 21.
    Gabriel J, Petrov OV, Kim Y, Martin SW, Vogel M (2015) Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using 7Li NMR field-cycling relaxometry and line-shape analysis. Solid State Nucl Magn Reson 70:53–62.  https://doi.org/10.1016/j.ssnmr.2015.06.004 CrossRefGoogle Scholar
  22. 22.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Theory, experiment and applications, 2nd edn. Wiley, New York, p 616. ISBN: 978-0-471-64749-2CrossRefGoogle Scholar
  23. 23.
    Nesterov OO, Trubitsyn MP, Plyaka SM, Volnyanskii DM (2015) Complex impedance spectra of glass and glass ceramic Li2O–11.5GeO2. Phys Solid State 57(9):1759–1763.  https://doi.org/10.1134/S1063783415090255 ADSCrossRefGoogle Scholar
  24. 24.
    Böhmer R, Jeffrey KR, Vogel M (2007) Solid-state Li NMR with applications to the translational dynamics in ion conductors. Prog Nucl Magn Reson Spectrosc 50(2–3):87–174.  https://doi.org/10.1016/j.pnmrs.2006.12.001 CrossRefGoogle Scholar
  25. 25.
    Böhmer R, Storek M, Vogel M (2018) NMR studies of ionic dynamics. In: Hodgkinson P (ed) Modern methods in solid-state NMR: a practitioners guide, vol 7. Royal Society of Chemistry, pp 193–230.  https://doi.org/10.1039/9781788010467-00193 CrossRefGoogle Scholar
  26. 26.
    Torrey HC (1953) Nuclear spin relaxation by translational diffusion. Phys Rev 92(4):962–969.  https://doi.org/10.1103/physrev.92.962 ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Kimmich R, Voigt G (1978) Zeitschrift fur Naturforschung. Astrophysik. Physik und Physikalische Chemie 3BA:1294–1306Google Scholar
  28. 28.
    Deutch JM (1972) J Chem Phys 56:6076–6081ADSCrossRefGoogle Scholar
  29. 29.
    Avogadro A, Villa M (1977) Nuclear magnetic resonance in a two dimensional system. J Chem Phys 66(6):2359–2367.  https://doi.org/10.1063/1.434272 ADSCrossRefGoogle Scholar
  30. 30.
    Bjorkstam JL, Villa M (1980) Second-order quadrupolar and low-dimensionality effects upon NMR resonance spectra. Phys Rev B 22(11):5025–5032.  https://doi.org/10.1103/physrevb.22.5025 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. Nesterov
    • 1
  • M. Trubitsyn
    • 1
  • O. Petrov
    • 2
  • M. Vogel
    • 2
  • M. Volnianskii
    • 1
  • M. Koptiev
    • 1
  • S. Nedilko
    • 3
  • Ya. Rybak
    • 3
  1. 1.Solid State Physics and Optoelectronics DepartmentOles Honchar Dnipro National UniversityDniproUkraine
  2. 2.Institute of Solid State PhysicsDarmstadt Technical UniversityDarmstadtGermany
  3. 3.Physics FacultyTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations