Advertisement

Ballistic Transmission of the Dirac Quasielectrons Through the Barrier in the 3D Tоpological Insulators

  • A. M. Korol
  • N. V. Medvid’
  • A. I. Sokolenko
  • I. V. Sokolenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)

Abstract

Topological insulators belong to the new class of substances that have recently been called Dirac materials ([1] and references therein). These include very different objects in their structure, in particular the low- and high-temperature d-wave superconductors, superfluid phases 3Не, graphene, and two- and three-dimensional insulators [1].

Keywords

Topological insulators Dirac quasielectrons Barriers Tunneling Transmission coefficient 

References

  1. 1.
    Wehling TO, Black-Schaffer AM, Balatsky AV (2014) Dirac materials. Adv Phys 63:1ADSCrossRefGoogle Scholar
  2. 2.
    Tanaka Y, Yokohama T, Nagaosa N (2009) Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys Rev 103:107002Google Scholar
  3. 3.
    Fu L (2009) Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys RevLett 103:266801ADSGoogle Scholar
  4. 4.
    Takahashi R, Murakami S (2011) Gapless interface states between topological insulators with opposite Dirac velocities. Phys Rev 107:166805Google Scholar
  5. 5.
    Iurov A, Gumbs G, Roslyak O, Huang D (2012) Anomalous photon-assisted tunneling in graphene. J Phys Condens Matter 24:015303ADSCrossRefGoogle Scholar
  6. 6.
    Iurov A, Gumbs G, Roslyak O, Huang D (2013) Photon dressed electronic states in topological insulators: tunneling and conductance. J Phys Condens Matter 25:135502ADSCrossRefGoogle Scholar
  7. 7.
    Alos-Palop M, Rakesh P, Blaauboer M (2013) Suppression of conductance in a topological insulator nanostep junction. Phys Rev 87:035432ADSCrossRefGoogle Scholar
  8. 8.
    Li H, Shao J, Zhang H, Dao-Xin Y, Yang G (2013) Resonant tunneling in a topological insulator superlattice. J Appl Phys 114:093703ADSCrossRefGoogle Scholar
  9. 9.
    Takagaki Y (2016) J Phys Condens Matter 28:025302ADSCrossRefGoogle Scholar
  10. 10.
    Zheng YJ, Song JT, Li YX (2016) Topological charge pump by surface acoustic waves. Chin Phys B 25:037301ADSCrossRefGoogle Scholar
  11. 11.
    Liu L, Li Y-X, Liu J (2012) Transport properties of Dirac electrons in graphene based double velocity-barrier structures in electric and magnetic fields. Phys Letters A 376:3342ADSCrossRefGoogle Scholar
  12. 12.
    Wang Y, Liu Y, Wang B (2013) Strain-tunable Josephson current in graphene-superconductor junction. Phys E 53:186CrossRefGoogle Scholar
  13. 13.
    Sun L, Fang C, Liang T (2013) Novel transport properties in monolayer graphene with velocity modulation. Chin Phys Lett 30(4):047201ADSCrossRefGoogle Scholar
  14. 14.
    Raoux A, Polini M, Asgari R, Hamilton AR, Fasio R, MacDonald AH (2010) Velocity modulation control of electron-wave propagation in graphene. Phys Rev B 81:073407ADSCrossRefGoogle Scholar
  15. 15.
    Concha A, Tešanović Z (2010) Effect of a velocity barrier on the ballistic transport of Dirac fermions. Phys Rev B 82:033413ADSCrossRefGoogle Scholar
  16. 16.
    Yuan JH, Zhang JJ, Zeng QJ, Zhang JP, Cheng Z (2011) Tunneling of Dirac fermions in graphene through a velocity barrier with modulated by magnetic fields. Physica B 406:4214ADSCrossRefGoogle Scholar
  17. 17.
    Krstajic PM, Vasilopoulos P (2011) Ballistic transport through graphene nanostructures of velocity and potential barriers. J Phys Condens Matter 23:135302ADSCrossRefGoogle Scholar
  18. 18.
    Korol AM, Sokolenko AI, Sokolenko IV (2018) The energy spectra of the graphene-based quasi-periodic superlattice. Low Temp Phys 44(8):803ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. M. Korol
    • 1
  • N. V. Medvid’
    • 2
  • A. I. Sokolenko
    • 2
  • I. V. Sokolenko
    • 2
  1. 1.Laboratory on Quantum Theory in Linkoping, ISIRLinkopingSweden
  2. 2.National University for Food TechnologiesKyivUkraine

Personalised recommendations