Simulation of the Formation of a Surface Nano-Crater Under the Action of High-Power Pulsed Radiation

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


The problem of destroying pulse influence on the surface of substance is considered. The differential equation in partial derivatives describing the dynamics of formation of a corrosion crater on a firm target surface has been received. It is shown that the formation of a crater is influenced essentially by the dynamics of pressure initiated by pulse laser influence. The asymptotic analysis for crater equation gives the basis to assert that the mathematical interpretation of the process of destruction corresponds to the actual temporal dynamics of formation of a crater on the substance.


Pulsed laser radiation Laser-stimulated formation of relief Nano-crater Pressure Temperature 


  1. 1.
    Wu Z, Zhang N, Zhu X, An L, Wang G, Tan M (2018) Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses. Chinese Physics B 27(7):077901. ADSCrossRefGoogle Scholar
  2. 2.
    Mann T, Mathieson R, Murray M, Richards B, Jose G (2018) Femtosecond laser ablation properties of Er3+ ion doped zinc-sodium tellurite glass. J Appl Phys 124(4):044903. ADSCrossRefGoogle Scholar
  3. 3.
    Shugaev MV, Gnilitskyi I, Bulgakova NM, Zhigilei LV (2017) Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys Rev B 96(20):205429. ADSCrossRefGoogle Scholar
  4. 4.
    Pasquier C, Sentis M, Utéza O, Sanner N (2016) Predictable surface ablation of dielectrics with few-cycle laser pulse even beyond air ionization. Appl Phys Lett 109(5):051102. ADSCrossRefGoogle Scholar
  5. 5.
    Zhang N, Yang J, Zhu X (2012) Investigation of the ultrafast process of femtosecond laser ablation of highly oriented pyrolytic graphite. Chin J Lasers 39(5):0503002. CrossRefGoogle Scholar
  6. 6.
    Suprun АD, Shmeleva LV, Razumova MА (2011) The influence of bulk absorption of substance on the threshold of destruction by the intensive pulse of electromagnetic radiation. Funct Mater 18(2):237–243. Google Scholar
  7. 7.
    Nayak BK, Iyengar VV, Gupta MC (2011) Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures. Prog Photovolt Res Appl 19(6):631–639. CrossRefGoogle Scholar
  8. 8.
    Byskov-Nielsen J, Savolainen JM, Christensen MS, Balling P (2010) Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates. Appl Phys A Mater Sci Process 101(1):97–101. ADSCrossRefGoogle Scholar
  9. 9.
    Lamela J, Lifante G, Han TPJ, Jaque F, Garcia-Navarro A, Olivares J, Agulló-López F (2009) Morphology of ablation craters generated by fs laser pulses in LiNbO3. Appl Surf Sci 255(7):3918–3922. ADSCrossRefGoogle Scholar
  10. 10.
    Corkum PB, Dupont E, Liu HC, Zhu X (2005) Method and apparatus for repair of defects in materials with short laser pulses. U.S. Patent No. 6878900, 12 Apr 2005.
  11. 11.
    Itina TE, Vidal F, Delaporte P, Sentis M (2004) Numerical study of ultra-short laser ablation of metals and of laser plume dynamics. Appl Phys A Mater Sci Process Issue 79(4–6):1089–1092. ADSCrossRefGoogle Scholar
  12. 12.
    Bykov NY, Bulgakova NM, Bulgakov AV, Loukianov GA (2004) Pulsed laser ablation of metals in vacuum: DSMC study versus experiment. Appl Phys A Mater Sci Process Issue 79(4–6):1097–1100. ADSCrossRefGoogle Scholar
  13. 13.
    Hulin D (2000) La matière condensée. Sciences aux temps ultracourts (de l’attoseconde aux petawatts), rapport sur la science et la technologie n09. l’Académie des Sciences. Septembre 2000, Londres-Paris-New York, pp 197–222Google Scholar
  14. 14.
    Zhu X, Naumov AY, Villeneuve DM, Corkum PB (1999) Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses. Appl Phys A Mater Sci Process 69:367–371. ADSCrossRefGoogle Scholar
  15. 15.
    Lenzner M (1999) Femtosecond laser-induced damage of dielectrics. Int J Mod Phys B 13(13):1559–1578. ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Landau LD, Lifshits EM (1986) Theoretical physics, vol VI, Hydrodynamics. Science. 736 p. (in Russian).
  18. 18.
    Shmeleva LV, Yezhov SM, Suprun AD, Shevchenko SY (2006) Theory of plasma dynamics in the case of solid matter surface destruction by pulses of power radiation. Ukrayins’kij Fyizichnij Zhurnal (Kyiv) 51(8):788–794. Google Scholar
  19. 19.
    Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Courier Corporation, New York. 1097 p. zbMATHGoogle Scholar
  20. 20.
    Fedorchenko AM (1992) Teoretychna fizyka [Theoretical physics], vol 1. Kyiv, Vyshcha shkola, 535 p. (in Ukrainian)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations