PET Ion-Track Membranes: Formation Features and Basic Applications

  • Artem Kozlovskiy
  • Daryn Borgekov
  • Inesh Kenzhina
  • Maxim Zdorovets
  • Ilya Korolkov
  • Egor Kaniukov
  • Maksim Kutuzau
  • Alena Shumskaya
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 221)


This chapter is a brief review of the formation features of PET ion-track membranes with different pore parameters and an overview of their basic applications. The main aspects of membrane formation with pores of cylindrical and conical shapes are considered as well as an effect of irradiation and etching modes for the production of micro- and nanoporous materials are analyzed. Thus, this chapter considers the influence of irradiation fluence on the parameters of PET ion-track membranes and discusses the optimal ratio of fluence-diameter for practical applications. The effect of etching time and temperature on the pore diameters and the thicknesses of PET ion-track membranes with cylindrical pores are considered. The way in which PET ion-track membranes with asymmetric (conical) pores are formed is shown, and the effect of etching modes on the pore parameters is discussed. Moreover, PET ion-track membranes have a high potential for a wide range of technological applications, which are considered here, for example, water purification, direct and reverse osmosis, and template synthesis of nanostructures.


  1. 1.
    Hoppe K, Fahrner WR, Fink D et al (2008) An ion track based approach to nano- and micro-electronics. Nucl Instrum Methods Phys Res B 266:1642–1646. ADSCrossRefGoogle Scholar
  2. 2.
    Fink D (2004) Fundamentals of ion-irradiated polymers: fundamentals and applications, vol 1. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  3. 3.
    Stamatialis DF, Papenburg BJ, Gironés M et al (2008) Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. J Membr Sci 308:1–34. CrossRefGoogle Scholar
  4. 4.
    Sartowska B, Starosta W, Apel P et al (2013) Polymeric track etched membranes - application for advanced porous structures formation. Acta Phys Pol A 123:819–821. CrossRefGoogle Scholar
  5. 5.
    Korolkov IV, Mashentseva AA, Güven O et al (2015) Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process. Nucl Instrum Methods Phys. CrossRefGoogle Scholar
  6. 6.
    Korolkov IV, Gorin YG, Yeszhanov AB et al (2018) Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater Chem Phys 205:55–63. CrossRefGoogle Scholar
  7. 7.
    Apel PY, Blonskaya IV, Dmitriev SN et al (2007) Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology 18:1–7. CrossRefGoogle Scholar
  8. 8.
    Shumskaya AE, Kaniukov EY, Kozlovskiy AL et al (2017) Template synthesis and magnetic characterization of FeNi nanotubes. Prog Electromagn Res C 75:23–30. CrossRefGoogle Scholar
  9. 9.
    Korolkov IV, Borgekov DB, Mashentseva AA (2017) The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chem Pap 71:2353–2358. CrossRefGoogle Scholar
  10. 10.
    Kaniukov EY, Kozlovsky AL, Shlimas DI et al (2017) Electrochemically deposited copper nanotubes. J Surf Invest X-ray Synchrotron Neutron Tech 11:270–275. CrossRefGoogle Scholar
  11. 11.
    Kaniukov E, Yakimchuk D, Arzumanyan G et al (2017) Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos Mag 6435:1–16. CrossRefGoogle Scholar
  12. 12.
    Demyanov SE, Kaniukov EY, Petrov AV, Belonogov EK (2008) Nanostructures of Si/SiO2/metal systems with tracks of fast heavy ions. Bull Russ Acad Sci Phys 72:1193–1195. CrossRefGoogle Scholar
  13. 13.
    Kozlovskiy AL, Korolkov IV, Kalkabay G et al (2017) Comprehensive study of Ni nanotubes for bioapplications : from synthesis to payloads attaching. J Nanomater 2017:1–9. CrossRefGoogle Scholar
  14. 14.
    Sivakov V, Kaniukov EY, Petrov AV et al (2014) Silver nanostructures formation in porous Si/SiO2 matrix. J Cryst Growth 400:21–26. ADSCrossRefGoogle Scholar
  15. 15.
    Demyanov S, Kaniukov E, Petrov A, Sivakov V (2014) Positive magnetoresistive effect in Si/SiO2(Cu/Ni) nanostructures. Sensors Actuators A Phys 216:64–68. CrossRefGoogle Scholar
  16. 16.
    Kaniukov EY, Shumskaya EE, Yakimchuk DV et al (2017) Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J Contemp Phys Armenian Acad Sci 52:155–160. ADSCrossRefGoogle Scholar
  17. 17.
    Apel P, Spohr R, Trautmann C, Vutsadakis V (1999) Track structure in polyethylene terephthalate irradiated by heavy ions: Let dependence of track diameter. Radiat Meas 31:51–56. CrossRefGoogle Scholar
  18. 18.
    Korolkov IV, Mashentseva AA, Güven O et al (2014) The effect of oxidizing agents / systems on the properties of track-etched PET membranes. Polym Degrad Stab 107:150–157. CrossRefGoogle Scholar
  19. 19.
    Apel PY, Dmitriev SN (2011) Micro- and nanoporous materials produced using accelerated heavy ion beams. Adv Nat Sci Nanosci Nanotechnol 2:13002. ADSCrossRefGoogle Scholar
  20. 20.
    Kaniukov EY, Ustarroz J, Yakimchuk DV et al (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27:115305. ADSCrossRefGoogle Scholar
  21. 21.
    Mashentseva AA, Orazbaeva DS, Gorin EG et al (2013) Calculation of bulk etch rate’s semi-empirical equation for polymer track membranes in stationary and dynamic modes. Kazn Bull Chem Ser 1:69–70Google Scholar
  22. 22.
    Kozlovskiy A, Borgekov K, Zdorovets M et al (2017) Application of ion-track membranes in processes of direct and reverse osmosis. Proc Natl Acad Sci Belarus Phys Ser 1:45–51Google Scholar
  23. 23.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966. ADSCrossRefGoogle Scholar
  24. 24.
    Toimil-Molares ME (2012) Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3:860–883. CrossRefGoogle Scholar
  25. 25.
    Toimil Molares ME, Buschmann V, Dobrev D et al (2001) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mater 13:62–65.<62::AID-ADMA62>3.0.CO;2-7 CrossRefGoogle Scholar
  26. 26.
    Son SJ, Reichel J, He B et al (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317. CrossRefGoogle Scholar
  27. 27.
    Hillebrenner H, Buyukserin F, Stewart JD, Martin CR (2006) Template synthesized nanotubes for biomedical delivery applications. Nanomedicine (Lond) 1:39–50. CrossRefGoogle Scholar
  28. 28.
    Kozlovskiy AL, Shlimas DI, Shumskaya EE, Kaniukov EY (2017) Effect of parameters of electroplating on structural and morphologic features of nickel nanotubes. Phys Metals Metallogr 118:174–179. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Artem Kozlovskiy
    • 1
    • 2
  • Daryn Borgekov
    • 1
    • 2
  • Inesh Kenzhina
    • 1
    • 2
  • Maxim Zdorovets
    • 2
    • 3
    • 4
  • Ilya Korolkov
    • 3
  • Egor Kaniukov
    • 5
  • Maksim Kutuzau
    • 5
  • Alena Shumskaya
    • 5
  1. 1.Astana branch of the Institute of Nuclear PhysicsNur-SultanKazakhstan
  2. 2.L.N. Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Astana branch of the Institute of Nuclear PhysicsAstanaKazakhstan
  4. 4.Ural Federal University named after the first President of Russia Boris YeltsinEkaterinburgRussian Federation
  5. 5.Scientific-Practical Materials Research Centre, NAS of BelarusMinskBelarus

Personalised recommendations