Skip to main content

Development of a Controlled in Situ Process for the Formation of Porous Anodic Alumina and Al Nanomesh From Thin Aluminum Films

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

  • 503 Accesses

Abstract

This work is devoted to the development and study of in situ controlled process of the formation of porous anodic alumina and Al nanomesh from thin aluminum films deposited by a direct current magnetron on glass substrates with an adhesive layer of Nb. In order to control in situ anodic oxidation processes during the formation of the structure of PAA-Al nanomesh and the removal of PAA by etching, the method of monitoring of an angular reflection curve was applied. The obtained Al nanomesh was studied by the SEM method. Particular attention is paid to the connection between the features of the initial thin-film structures and the formed Al nanomesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Losic D, Santos A (2015) Nanoporous alumina: fabrication, structure, properties and applications, Springer Series in Materials Science, vol 219. Springer, Cham

    Book  Google Scholar 

  2. Choi J, Nielsch K, Reiche M, Wehrspohn RB, Gosele U (2003) Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. J Vac Sci Technol B 21:763–766

    Article  Google Scholar 

  3. Ottone C, Laurenti M, Bejtka K, Cauda V (2014) Effects of the film thickness and roughness in the anodization process of very thin aluminum films. J Mater Sci Nanotech 1(1):1–9

    Google Scholar 

  4. Lita A, Sanchez JE (1999) Characterization of surface structure in sputtered Al films: correlation to microstructure evolution. J Appl Phys 85(2):876–882

    Article  ADS  Google Scholar 

  5. Lebyedyeva T, Kryvy S, Lytvyn P, Skoryk M, Shpylovyy P (2016) Formation of nanoporous anodic alumina by anodization of aluminum films on glass substrates. Nanoscale Res Lett 11:203

    Article  ADS  Google Scholar 

  6. Li Y, Chen Qiu M, Yu H, Zhang X, Sun XW, Chen R (2016) Preparation of aluminum nanomesh thin films from an anodic aluminum oxide template as transparent conductive electrodes. Sci Rep. https://doi.org/10.1038/srep20114

  7. Kazarkin B, Mohammed AS, Stsiapanau A, Zhuk S, Satskevich Y, Smirnov A (2014) Transparent conductor based on aluminum nanomesh. J Phys Conf Series. https://doi.org/10.1088/1742-6596/541/1/012027

    Google Scholar 

  8. Smirnov A, Stsiapanau A, Mohammed A, Mukha E, Kwok HS, Murauski A (2011) Combined nanostructured layers for display applications. Proceedings SID symposium display week-2011 Los-Angeles, USA, pp 1385–1387

    Google Scholar 

  9. Dadivanyan AK, Belyaev VV, Chausov DN, Stepanov AA, Smirnov AG, Tsybin AG, Osipov MA (2015) Nanomesh aluminum films for LC alignment. Theoretical and experimental modeling. Mol Cryst Liq Cryst 611(1):117–122

    Article  Google Scholar 

  10. Hubarevich A, Marus M, Stsiapanau A, Smirnov A, Zhao J, Fan W, Wang H, Sun X (2015) Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing. Phys Status Solidi A Appl Mater Sci 212(10):2174–2178

    Article  ADS  Google Scholar 

  11. Gao J, Kempa K, Giersig M, Akinoglu EM, Han B, Li R (2016) Physics of transparent conductors. Adv Phys 65(6):553–617

    Article  ADS  Google Scholar 

  12. Stadler A (2012) Transparent conducting oxides – an up-to-date overview. Materials 5:661–683

    Article  ADS  Google Scholar 

  13. Kumar A, Zhou C (2010) The race to replace tin-doped indium oxide: which material will win? ACS Nano 4:11–14

    Article  Google Scholar 

  14. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon 6:809–817

    Article  ADS  Google Scholar 

  15. Song TB, Li N (2014) Emerging transparent conducting electrodes for organic light emitting diodes. Electronics 3(1):190–204

    Article  Google Scholar 

  16. Zhou Y, Azumi R (2016) Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater 17(1):493–516

    Article  Google Scholar 

  17. Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5):1727–1752

    Article  ADS  Google Scholar 

  18. Rana K, Singh J, Ahn JH (2014) A graphene-based transparent electrode for use in flexible optoelectronic devices. J Mater Chem C 4(2):2646–2656

    Article  Google Scholar 

  19. Sannicolo T, Lagrange M, Cabos A, Celle C, Simonato JP, Bellet D (2016) Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44):6052–6075

    Article  Google Scholar 

  20. Guo C, Ren Z (2015) Flexible transparent conductors based on metal nanowire networks. Mater Today 18(3):143–154

    Article  MathSciNet  Google Scholar 

  21. Luo M, Liu Y, Huang W, Qiao W, Zhou Y, Ye Y, Chen LS (2017) Towards flexible transparent electrodes based on carbon and metallic materials. Micromachines 8(12):1–16

    Google Scholar 

  22. Wu H, Kong D, Ruan Z, Hsu PC, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 8(6):421–425

    Article  ADS  Google Scholar 

  23. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gosele U (2002) Self-ordering regimes of porous alumina: the 10% porosity rule. Nano Lett 2:677–680

    Article  ADS  Google Scholar 

  24. Sulka G (2008) Highly ordered anodic porous alumina formed by self-organized anodizing, Chapter 1. In: Eftekhari A (ed) Nanostructured materials in electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  25. Zhang J, Kielbasa JE, Carroll DL (2010) Controllable fabrication of porous alumina templates for nanostructures synthesis. Mater Chem Phys 122:295–300

    Article  Google Scholar 

  26. Abd-Elnaiem AM, Gaber A (2013) Parametric study on the anodization of pure aluminum thin film used in fabricating nano-pores template. Int J Electrochem Sci 8:9741–9751

    Google Scholar 

  27. Rahman M, Garcia-Caurel E, Santos A, Marsal LF, Pallarès J, Ferré-Borrull J (2012) Effect of the anodization voltage on the pore-widening rate of nanoporous anodic alumina. Nanoscale Res Lett 7(1):474

    Article  ADS  Google Scholar 

  28. Sulka G, Zaraska L, Stępniowski W (2011) Anodic porous alumina as a template for nanofabrication. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 11, 2nd edn. American Scientific Publishers, Stevenson Ranch, pp 261–349

    Google Scholar 

  29. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Sci 268(5216):1466–1468

    Article  ADS  Google Scholar 

  30. Shingubara S, Murakami Y, Sakaue H, Takahagi T (2001) Formation of Al dot hexagonal array on Si using anodic oxidation and selective etching. Jpn J Appl Phys 41:L340–L343

    Article  ADS  Google Scholar 

  31. Petrov I, Barna PB, Hultman L, Green JE (2003) Microstructural evolution during film growth. J Vac Sci Technol A 21(5):S117–S128

    Article  ADS  Google Scholar 

  32. Bordo K, Rubanh HG (2012) Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors. Mater Sci/Medziagotyra 18(4):313S

    Google Scholar 

  33. Her SC, Wang YH (2015) Temperature effect on microstructure and mechanical properties of aluminum film deposited on glass substrates. Indian J Eng Mat Sci 22:268–272

    Google Scholar 

  34. Lei Y, Cai W, Wilde G (2007) Highly ordered nanostructures with tunable size, shape and properties: a new way to surface nano-patterning using ultra-thin alumina masks. Prog Mater Sci 52:465–539

    Article  Google Scholar 

  35. Chin IK, Yam FK, Chai Y, Hassan Z (2015) Comparative study of porous anodic alumina: effects of aluminium deposition methods. Mater Sci Technol 31(6):709–714

    Article  Google Scholar 

  36. Upreti S, Mukherjee K, Palit M, Bag A, Mallik S, Chattopadhyay S, Maiti SK (2014) Porous anodic alumina template formation: deposition technique dependence. In: Physics of semiconductor devices. Springer, Cham, pp 725–728

    Chapter  Google Scholar 

  37. Es-Souni M, Habouti S (2014) Ordered nanomaterial thin films via supported anodized alumina templates. Front Mater 1:1–9

    Article  Google Scholar 

  38. Chu SZ, Wada K, Inoue S, Segawa HJ (2011) Direct growth of highly ordered crystalline zirconia nanowire arrays with high aspect ratios on glass by a tailored anodization. Electrochem Soc 158:148

    Article  Google Scholar 

  39. Arslan HC, Yusufoglu I, Aslana MM (2014) Structural and optical characterizations of porous anodic alumina–aluminum nanocomposite films on borofloat substrates. Opt Eng 53(7):071822

    Article  ADS  Google Scholar 

  40. Wang CE, Tanaka S, Saito K, Shimizu T, Shingubara S (2014) Fabrication of ordered arrays of anodic aluminum oxide pores with interpore distance smaller than the pitch of nano-pits formed by ion beam etching. J Mater Sci & Nanotech 1(1):1–6

    Google Scholar 

  41. Yasui K, Nishio K, Nunokawa H, Masuda H (2005) Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds. J Vac Sci Technol B 23:L9

    Article  Google Scholar 

  42. Chahrour KM, Ahmed NM, Hashim MR, Elfadill NG, Maryam W, Ahmad MA, Bououdina M (2015) Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis. Superlattice Microst 88:489–500

    Article  ADS  Google Scholar 

  43. Foong TRB, Sellinger A, Hu X (2008) Origin of the bottlenecks in preparing anodized aluminium oxide (AAO) templates on ITO glass. ACS Nano 2(11):2250–2256

    Article  Google Scholar 

  44. Imamura T, Hasuo S (1992) Fabrication of high quality Nb/AlOx/-Al/Nb Josephon junctions. II. Deposition of thin Al layers on Nb films. IEEE Trans Appl Supercond 2:84–94

    Article  ADS  Google Scholar 

  45. Yamaguchi A, Hotta K, Teramae N (2009) Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film. Anal Chem 81(1):105–111

    Article  Google Scholar 

  46. Hotta K, Yamaguchi A, Teramae N (2010) Properties of a metal clad waveguide sensor based on a nanoporous metaloxide/metal multilayer film. Anal Chem 82(14):6066–6073

    Article  Google Scholar 

  47. Voitovich ID, Lebyedyeva TS, Rachkov OE, Gorbatiuk OB, Shpylovyy PB (2015) Anodic alumina-based nanoporous coatings for sensory applications. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, nano-optics, nanocomposites, and surface studies. Springer, Cham, pp 423–431

    Chapter  Google Scholar 

  48. Biednov M, Lebyedyeva T, Shpylovyy P (2015) Gold and aluminum based surface plasmon resonance biosensors: sensitivity enhancement. Proceedings 9506, optical sensors 95061P. https://doi.org/10.1117/12.2177992

  49. Surganov V, Gorokh G (2000) Array of niobium nanotips formed in porous anodic alumina matrix. Proc SPIE. https://doi.org/10.1117/12.382321

  50. Mozalev A, Sakairi M, Saeki I, Takahashi H (2003) Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film. Electrochim Acta 48(20):3155–3170

    Article  Google Scholar 

  51. Mozalev A, Vázquez RM, Bittencourt C, Cossement D, Gispert-Guirado F, Llobet E, Habazaki H (2014) Formation–structure–properties of niobium-oxide nanocolumn arrays via self-organized anodization of sputter-deposited aluminum-on-niobium layers. J Mater Chem C 2:4847–4860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebyedyeva, T., Skoryk, M., Shpylovyy, P. (2019). Development of a Controlled in Situ Process for the Formation of Porous Anodic Alumina and Al Nanomesh From Thin Aluminum Films. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_3

Download citation

Publish with us

Policies and ethics