Advertisement

Optical Phenomena in Nanoscale Tin Dioxide Films Obtained by Means of Polymers

  • L. Filevska
  • A. Chebanenko
  • M. Klochkov
  • V. Grinevich
  • V. Smyntyna
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

The paper presents the results of optical phenomena-related set of studies: absorption, reflection, and room temperature photoluminescence for the tin dioxide (SnO2) films structured in the process of production by means of polymer in the initial solution. The band gap of the films, estimated from the reflection spectra, was 2.98 eV (for 0.1% polymer) and 3.07 eV (for 1% polymer). The obtained results are referred to the crystal size limitations by the structuring polymer molecules. A minimum is observed on the reflection curve spectrum at a frequency ν = 4.25 · 1015 s−1. The free electron concentration calculated from the minimum of the reflection curve spectrum was 9.4 · 1012 cm−3. The photoluminescence (PL) maximum spectral position does not depend on the poly(vinyl acetate) (PVA) concentration; however, the intensity of the λmax = 580 nm band follows the PVA concentration growth. The observed PL bands may be associated with the radiant transitions of electrons from the conduction band of SnO2 to the levels of V0 (1300), respectively. In view of the above, the obtained results are promising for use in creating sensors for detecting optical signals using nanosized tin dioxide.

Keywords

Tin dioxide Nanosized films Optical phenomena Optical absorption Reflection Photoluminescence 

References

  1. 1.
    Arai T, Adachi S (2014) Simple wet chemical synthesis and photoluminescence characterization of SnO2:Eu3+ reddish-orange phosphor. J. Lumin 153(9):46–53CrossRefGoogle Scholar
  2. 2.
    Yang Y, Li S, Liu F, Zhang N, Fang G (2017) Bidirectional electroluminescence from p-SnO2/i-MgZnO/n-ZnO heterojunction light-emitting diodes. J. Lumin 186(6):223–228CrossRefGoogle Scholar
  3. 3.
    Bouzidi C, Elhouichet H, Moadhen A (2011) Yb3+ effect on the spectroscopic properties of Er–Yb codoped SnO2 thin films. J Lumin 131(12):2630–2635CrossRefGoogle Scholar
  4. 4.
    Bajpai N, Khan SA, Kher RS, Bramhe N, Tiwari A (2014) Thermoluminescence investigation of sol–gel derived and γ-irradiated SnO2:Eu3+ nanoparticles. J. Lumin 145(1):940–943CrossRefGoogle Scholar
  5. 5.
    Agekyan VT (1979) Slozhny spektr exitonno-primesnykh komplexov v defektnykh kristallakh dvuokisi olova. Pis’ma v ZHETF 29(8):475–479. (The Complicated spectrum of exiton impurity complexes in the defect crystals of tin dioxide. Letters to the Journal of experimental and theoretical physics (ZHETPh) Soviet.Acad.Sc, 29(8), 475-479(1979))Google Scholar
  6. 6.
    Alhuthali A, El-Nahass MM, Atta AA, Abd El-Raheem MM, Hassanien AM (2015) Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique. J. Lumin 158(2):165–171CrossRefGoogle Scholar
  7. 7.
    Zhu Z, Ma J, Luan C, Kong L, Yu Q (2011) Structure and photoluminescence properties of epitaxial SnO2 films grown on α-Al2O3 (012) by MOCVD. J Lumin 131(1):88–91CrossRefGoogle Scholar
  8. 8.
    Ryabtsev SV (2011) Electrofizicheskie i opticheskie svoystva razlichnykh nanoform oksida olova, Avtoreferat diss…. Doctor fiz.-mat, nauk, Voronezh, 2011. (Electrophysical and optical properties of different nanoforms of tin dioxide, Doctor of Sc. Thesises, Voronezh, 2011)Google Scholar
  9. 9.
    Agekyan VT, Serov AY, Filosofov NG (2014) Light emission from tin-dioxide crystals. Semiconductors 48(4):442–445ADSCrossRefGoogle Scholar
  10. 10.
    Meier C, Luttjohann S, Kravets VG, Nienhaus H, Lorke A, Ifeacho P, Wiggers H, Schulz C, Kennedy MK, Kruis FE (2006) Vibrational and defect states in SnOx nanoparticles. J Appl Phys 99:113108ADSCrossRefGoogle Scholar
  11. 11.
    Gu F, Wang SF, Song CF, Lü MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Synthesis and luminescence properties of SnO2 nanoparticles. Chem Phys Lett 372(3–4):451–454ADSCrossRefGoogle Scholar
  12. 12.
    Jeong J, Choi SP, Hong KJ, Song HJ, Park JS (2006) Structural and optical properties of SnO2 thin films deposited by using CVD techniques. J Korean Phys Soc 48(5):960–963Google Scholar
  13. 13.
    Bonu V, Das A, Amirthapandian S, Dhara S, Tyagi AK (2015) Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles. Phys Chem Chem Phys 17:9794–9801CrossRefGoogle Scholar
  14. 14.
    Grinevich VS, Smyntyna VA, Filevska LM (2005) Photoluminescence of tin dioxide thin films obtained with the use of polymers. Photoelectronics 14:42–44Google Scholar
  15. 15.
    Kar A, Kundu S, Patra A (2011) Surface defect-related luminescence properties of SnO2 Nanorods and nanoparticles. J Phys Chem C 115(1):118–124CrossRefGoogle Scholar
  16. 16.
    Pankratov EM (1969) Tekhnologiya poluprovodnikovykh sloev dvuokisi olova, Pankratov EM, R’yumin VP, Schelkina NP, M.: Energiya, 1969 (Technology of the semiconductor layers of Tin dioxide, Pankratov EM, R’yumin VP, Schelkina NP, Moscow, Energy, 1969)Google Scholar
  17. 17.
    Ulug B, Türkdemir HM, Ulug A, Büyükgüngör O, Yücel MB, Smyntyna VA, Grinevich VS, Filevskaya LN (2010) Structure, spectroscopic and thermal characterization of bis(acetylacetonato)dichlorotin(IV) synthesized in aqueous solution. Ukr Chem J 76(7):12–17Google Scholar
  18. 18.
    Filevskaya LN, Smyntyna VA, Grinevich VS (2006) Morphology of nanostructured SnO2 films prepared with polymers employment. Photo-Dermatology 15:11–14Google Scholar
  19. 19.
    Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126ADSCrossRefGoogle Scholar
  20. 20.
    Grinevich VS, Serdega BK, Filevskaya LN, Smyntyna VA (2015) Nanostrukturirovannyj tonkoplenochnyj dioksid olova: metody poluchenija i opticheskie svoistva Neravnovesnye protsessy v sensornykh nanostrukturakh. Pod redaktsiey Smyntyny V.A., Odessa, ONU, 2015, 41-119. (Nanostructured thin-film tin dioxide: production methods and optical properties in the book: Non-equilibrium processes in sensory nanostructures, Smyntyna VA (ed) Odessa, Odessa Mechnikov National University, pp 41–119)Google Scholar
  21. 21.
    Krylov PN, Gil’mutdinov FZ, Romanov EA, Fedotova IV (2011) The influence of thermal annealing on the optical properties of nanocrystalline zinc sulfide films. Semiconductors 45(11):1512–1516ADSCrossRefGoogle Scholar
  22. 22.
    Ukhanov YI (1977) Opticheskie svoystva poluprovodnikov. Nauka, Moscow. (Optical properties of semiconductors. Moscow, Nauka, 1977)Google Scholar
  23. 23.
    Gamartz AT, Kanagaeva YM, Moshnikov VA (2005) Determination of the charge carrier concentration in lead selenide polycrystalline layers using reflectance spectra. Semiconductors 39(6):636–637ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • L. Filevska
    • 1
  • A. Chebanenko
    • 1
  • M. Klochkov
    • 1
  • V. Grinevich
    • 1
  • V. Smyntyna
    • 1
  1. 1.Odessa I.I. Mechnikov National UniversityOdessaUkraine

Personalised recommendations