Advertisement

Synthesis and Study of Methacrylic Monomers and Polymers on the Basis of Aurones

  • Nataliia Iukhymenko
  • Anton Martynes-Harsiia
  • Oksana Kharchenko
  • Vitaliy Smokal
  • Oksana Krupka
  • Aleksiy Kolendo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

The hydroxyaurones were synthesized by condensation of benzofuran-3-one with hydroxybenzaldehydes, and then new methacrylic monomers were obtained. The kinetics of radical thermo-initiated homopolymerization of new monomers by dilatometric method in 10% solutions of DMF was investigated. The intra-chain stabilizing effect of aurone derivatives, on the destruction of polystyrene, has been investigated. It has been established that the applications of the studied additives with covalent introduction significantly inhibit the process of its degradation in comparison with industrial polystyrene produced by Styron (Switzerland).

Keywords

Radical polymerization Methacrylates Thermal decomposition Polymers on the basis of aurones 

References

  1. 1.
    Nestorak I et al (2011) Investigation of inhibiting action mechanism of succinimidophenylmethacrylate derivatives prepared by the Diels-Alder reaction on polystyrene decomposition. Mol Cryst Liq Cryst 536:208–214.  https://doi.org/10.1080/15421406.2011.538609 CrossRefGoogle Scholar
  2. 2.
    Schwetlick K et al (2002) Antioxidant action mechanisms of hindered amine stabilizers. Polym Degrad Stab 78(1):35–40CrossRefGoogle Scholar
  3. 3.
    Smoliak LY et al (2003) Estimation of parameters that correlate molecular structure of hindered amines with their stabilizing efficiency. Polym Degrad Stab 82(2):169–172CrossRefGoogle Scholar
  4. 4.
    Boersma A (2006) Predicting the efficiency of antioxidants in polymers. Polym Degrad Stab 91(3):472–478CrossRefGoogle Scholar
  5. 5.
    Ebdon JR et al (2000) Thermal degradation and flame retardance in copolymers of methyl methacrylate with diethyl(methacryloyloxymethyl)phosphonate. Polym Degrad Stab 70(3):425–436CrossRefGoogle Scholar
  6. 6.
    Kolendo AYu et al (2009) Ukr. P. 41029. Promyslova Vlastnist’, 8. (in Ukrainian)Google Scholar
  7. 7.
    Karabets Y et al (2014) Brominating of oxyphenylimides for enhancement of stabilizing processes Mol. Cryst Liq Cryst 590:90–96.  https://doi.org/10.1080/15421406.2013.873852 CrossRefGoogle Scholar
  8. 8.
    Karabets Y et al (2017) Synthesis and investigation of bromine containing oxy- and Propionoxyphenylimides for polymers thermostabilization Mol. Cryst Liq Cryst 640:54–57.  https://doi.org/10.1080/15421406.2016.1255512 CrossRefGoogle Scholar
  9. 9.
    Nestorak I et al (2008) Thermal stabilizing properties of maleimidophenylmethacrylates derivatives with substitutes of various molecular arhitectures in imide cycle. Mol Cryst Liq Cryst 497:299–306.  https://doi.org/10.1080/15421400801921991 CrossRefGoogle Scholar
  10. 10.
    Kharchenko O et al (2016) Design, synthesis, and photochemistry of styrylquinoline-containing polymers. Mol Cryst Liq Cryst 640:71–77.  https://doi.org/10.1080/15421406.2016.1255516 CrossRefGoogle Scholar
  11. 11.
    Smokal V et al (2018) Synthesis and photophysical properties of new styrylquinoline-containing polymers. Mol Cryst Liq Cryst 661(1):38–44.  https://doi.org/10.1080/15421406.2018.1460236 CrossRefGoogle Scholar
  12. 12.
    Kharchenko O et al (2018) Reactivity and polymerisation ability of styrilquinaline containing metacrylic monomers. Chem Chem Technol 12(1):47–52.  https://doi.org/10.23939/chcht12.01.047 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Derkowska-Zielinska B et al (2018) Functionalized polymers with strong push-pull azo chromophores in side chain for optical application. Opt Mater 85:391–398.  https://doi.org/10.1016/j.optmat.2018.09.008 ADSCrossRefGoogle Scholar
  14. 14.
    Guichaoua D et al (2018) Functionalized methacrylic thiazolidinone polymer for optical applications. ICTON 8473860.  https://doi.org/10.1109/ICTON.2018.8473860
  15. 15.
    Bourbigot S et al (2004) Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite. Polym Degrad Stab 84(3):483–492CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nataliia Iukhymenko
    • 1
    • 2
  • Anton Martynes-Harsiia
    • 1
  • Oksana Kharchenko
    • 1
  • Vitaliy Smokal
    • 1
  • Oksana Krupka
    • 1
  • Aleksiy Kolendo
    • 1
  1. 1.Department of ChemistryTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Faculty of Chemistry, Macromolecular Chemistry DepartmentTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations