Tryptophan-Stabilized Plasmonic Fe3O4/Ag Nanoparticles

  • Ie. V. Pylypchuk
  • Iu. P. Mukha
  • N. V. Vityuk
  • K. Szczepanowicz
  • L. P. Storozhuk
  • A. M. Eremenko
  • P. Warszyński
  • P. P. Gorbyk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)


It is obvious that the development of core–shell particles combining superparamagnetic core and plasmonic shell is attractive and opens a broad area of potential applications. In the current article, the “green” method for the preparation of stable Fe3O4 core Agshell nanoparticles (NPs) with the use of essential amino acid tryptophan is proposed. During Ag+ reduction of the surface of Fe3O4 NPs, tryptophan acts as a reducing and stabilizing agent. Consequently, the mixture of plasmonic NPs is formed, namely, small individual Ag NPs and complex core–shell Fe3O4 core Agshell composites having superparamagnetic core. Colloidal solutions exhibit absorption in the visible range of spectra near 420 nm that corresponds to localized surface plasmon resonance of silver. After the separation with magnetic field, Fe3O4 core Agshell NPs (the average size of 40–60 nm) have plasmon resonance band at max = 424 nm, indicating the formation of Ag shell on the magnetite surface. Obtained colloids were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta-potential, and UV–Vis spectroscopy. According to the model in vitro test on skin fibroblast line BT5ta, more than 70% of cells were found to be viable relative to the control, during 24 h of incubation with NPs.


Nanoparticles Magnetite Ag nanoparticles Plasmonic nanostructures Core-shell nanoparticles Fe3O4/Ag 



This work is supported in the framework of grants of the National Academy of Sciences of Ukraine for the research laboratory/group of young scientists of NASU for conducting investigations in priority directions of science and technology development in 2018 (no. 29/2018).


  1. 1.
    Sun CR, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee DH, Ellenbogen RG, Ratner B, Zhang MQ (2010) PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano 4(4):2402–2410CrossRefGoogle Scholar
  2. 2.
    Kołodyńska D, Gęca M, Pylypchuk IV, Hubicki Z (2016) Development of new effective sorbents based on nanomagnetite. Nanoscale Res Lett 11(1):152ADSCrossRefGoogle Scholar
  3. 3.
    Pylypchuk IV, Kołodyńska D, Gorbyk P (2017) Gd (III) adsorption on the DTPA-functionalized chitosan/magnetite nanocomposites. Sep Sci Technol 53:1–11Google Scholar
  4. 4.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265CrossRefGoogle Scholar
  5. 5.
    Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan D, Hu G, Scott MJ, Fuhrhop RW, Gaffney PJ, Wickline SA (2009) Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 3(12):3917–3926CrossRefGoogle Scholar
  6. 6.
    Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of Ultrasmall Superparamagnetic Iron Oxide Particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine 2(4):609Google Scholar
  7. 7.
    Kumar CS, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808CrossRefGoogle Scholar
  8. 8.
    Li Y-W, Chen Z-G, Zhao Z-S, Li H-L, Wang J-C, Zhang Z-M (2015) Preparation of magnetic resonance probes using one-pot method for detection of hepatocellular carcinoma. World J Gastroenterol: WJG 21(14):4275CrossRefGoogle Scholar
  9. 9.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161CrossRefGoogle Scholar
  10. 10.
    Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperth 24(6):467–474CrossRefGoogle Scholar
  11. 11.
    Farkhari N, Abbasian S, Moshaii A, Nikkhah M (2016) Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: investigating some important parameters in bio-sensing applications. Colloids Surf B: Biointerfaces 148:657–664CrossRefGoogle Scholar
  12. 12.
    Li S, Li D, Zhang Q-Y, Tang X (2016) Surface enhanced Raman scattering substrate with high-density hotspots fabricated by depositing Ag film on TiO2-catalyzed Ag nanoparticles. J Alloys Compd 689:439–445CrossRefGoogle Scholar
  13. 13.
    Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385Google Scholar
  14. 14.
    Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z (2014) A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@ Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 35(22):5847–5861CrossRefGoogle Scholar
  15. 15.
    Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38(10):2143–2147ADSCrossRefGoogle Scholar
  16. 16.
    Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208CrossRefGoogle Scholar
  17. 17.
    Chen C-Y, Chiang C-L (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62(21-22):3607–3609CrossRefGoogle Scholar
  18. 18.
    Yuan Z, Zhao Y, Yang W, Hu Y, Cai K, Liu P, Ding H (2016) Fabrication of antibacterial surface via UV-inducing dopamine polymerization combined with co-deposition Ag nanoparticles. Mater Lett 183:85–89CrossRefGoogle Scholar
  19. 19.
    Zaharia A, Muşat V, Ghisman VP, Baroiu N (2016) Antimicrobial hybrid biocompatible materials based on acrylic copolymers modified with (Ag) ZnO/chitosan composite nanoparticles. Eur Polym J 84:550–564CrossRefGoogle Scholar
  20. 20.
    Mukha IP, Eremenko A, Smirnova N, Mikhienkova A, Korchak G, Gorchev V, Chunikhin AY (2013) Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol 49(2):199–206CrossRefGoogle Scholar
  21. 21.
    Chi Y, Yuan Q, Li Y, Tu J, Zhao L, Li N, Li X (2012) Synthesis of Fe3O4@ SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 383(1):96–102ADSCrossRefGoogle Scholar
  22. 22.
    Pang Y, Wang C, Wang J, Sun Z, Xiao R, Wang S (2016) Fe3O4@ Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron 79:574–580CrossRefGoogle Scholar
  23. 23.
    Yu W, Huang Y, Pei L, Fan Y, Wang X, Lai K (2014) Magnetic Fe3 O4/Ag hybrid nanoparticles as surface-enhanced Raman scattering substrate for trace analysis of furazolidone in fish feeds. J Nanomater 2014:103Google Scholar
  24. 24.
    Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18(28):285604ADSCrossRefGoogle Scholar
  25. 25.
    Zheng B, Zhang M, Xiao D, Jin Y, Choi MM (2010) Fast microwave synthesis of Fe3 O4 and Fe3 O4/Ag magnetic nanoparticles using Fe2+ as precursor. Inorg Mater 46(10):1106–1111CrossRefGoogle Scholar
  26. 26.
    Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi N (2015) A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Phys B Condens Matter 457:30–35ADSCrossRefGoogle Scholar
  27. 27.
    Shmarakov IO, Mukha IP, Karavan VV, Chunikhin OY, Marchenko MM, Smirnova NP, Eremenko AM (2014) Tryptophan-assisted synthesis reduces bimetallic gold/silver nanoparticle cytotoxicity and improves biological activity. Nano 1:6Google Scholar
  28. 28.
    Mukha I, Vityuk N, Severynovska O, Eremenko A, Smirnova N (2016) The pH-dependent stucture and properties of Au and Ag nanoparticles produced by tryptophan reduction. Nanoscale Res Lett 11(1):101ADSCrossRefGoogle Scholar
  29. 29.
    Mukha I, Vityuk N, Grodzyuk G, Shcherbakov S, Lyberopoulou A, Efstathopoulos EP, Gazouli M (2017) Anticancer effect of Ag, Au, and Ag/Au bimetallic nanoparticles prepared in the presence of tryptophan. J Nanosci Nanotechnol 17(12):8987–8994CrossRefGoogle Scholar
  30. 30.
    Shmarakov I, Mukha I, Vityuk N, Borschovetska V, Zhyshchynska N, Grodzyuk G, Eremenko A (2017) Antitumor activity of alloy and core-shell-type bimetallic AgAu nanoparticles. Nanoscale Res Lett 12(1):333ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ie. V. Pylypchuk
    • 1
  • Iu. P. Mukha
    • 1
  • N. V. Vityuk
    • 1
  • K. Szczepanowicz
    • 2
  • L. P. Storozhuk
    • 1
  • A. M. Eremenko
    • 1
  • P. Warszyński
    • 2
  • P. P. Gorbyk
    • 1
  1. 1.Chuiko Institute of Surface Chemistry, NAS of UkraineKyivUkraine
  2. 2.Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of SciencesKrakowPoland

Personalised recommendations