Advertisement

Nanocomposite Hydrogels Containing Silver Nanoparticles as Materials for Wound Dressings

  • O. Nadtoka
  • N. Kutsevol
  • O. Linnik
  • M. Nikiforov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

Hydrogel-silver nanocomposites are found to be excellent materials for antibacterial applications. For developing of these сomposites, the hydrogel matrices are synthesized first by polymerizing of acrylamide in the presence of cross-linker N,N-methylene-bis-acrylamide using redox initiating system cerium(IV) ammonium nitrate. Silver nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating the silver ion sand subsequent reduction with sodium borohydride or UV irradiation. A series of hydrogel-silver nanoparticle composites are developed and are characterized by using Fourier transform infrared (FTIR) and UV–visible (UV–vis) spectroscopy, scanning electron microscopic methods, as well as swelling.

Keywords

Silver nanocomposites Polyacrylamide Hydrogels Wound dressing 

Notes

Acknowledgment

With the support of the Military and Research Directorate of the General Staff of the Armed Forces of Ukraine.

References

  1. 1.
    Purna SK, Babu M (2000) Collagen based dressings: a review. Burns 26:54–62CrossRefGoogle Scholar
  2. 2.
    Choate CS (1994) Wound dressings. A comparison of classes and their principles of use. J Am Podiatr Med Assoc 84(9):463–469CrossRefGoogle Scholar
  3. 3.
    Ma D, Zhang L-M (2008) Fabrication and modulation of magnetically supramolecular hydrogels. J Phys Chem B 112(20):6315–6321CrossRefGoogle Scholar
  4. 4.
    Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103ADSCrossRefGoogle Scholar
  5. 5.
    Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63CrossRefGoogle Scholar
  6. 6.
    Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23(3):887–892CrossRefGoogle Scholar
  7. 7.
    Hillyer JF, Alrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticle. J Pharm Sci 90(12):1927–1936CrossRefGoogle Scholar
  8. 8.
    Bajpai SK, Murali Mohan Y, Bajpai M, Rasika T, Varsha T (2007) Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 7(9):2994–3010CrossRefGoogle Scholar
  9. 9.
    Tan Y, Jiang L, Li Y, Zhu D (2002) One dimensional aggregates of silver nanoparticles induced by the stabilizer 2-mercaptobenzimidazole. J Phys Chem B 106(12):3131–3138CrossRefGoogle Scholar
  10. 10.
    Tanori J, Pileni MP (1997) Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 13(4):639–646CrossRefGoogle Scholar
  11. 11.
    Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem 111(21):7676–7681Google Scholar
  12. 12.
    Morones JR, Frey W (2007) Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent. Langmuir 23(15):8180–8186CrossRefGoogle Scholar
  13. 13.
    Biffis A, Orlandi N, Corain B (2003) Microgel-stabilized metal nanoclusters: size control by microgel nanomorphology. Adv Mater 15(18):1551–1555CrossRefGoogle Scholar
  14. 14.
    Saravanan P, Raju MP, Alam S (2007) A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys 103(2–3):278–282CrossRefGoogle Scholar
  15. 15.
    Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224ADSCrossRefGoogle Scholar
  16. 16.
    Nadtoka O, Kutsevol N (2018) Thermal analysis of cross-linked hydrogels based on PVA and D-g-PAA obtained by various methods. Mol Cryst Liq Cryst 661(1):52–57CrossRefGoogle Scholar
  17. 17.
    Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111(21):7676–7681CrossRefGoogle Scholar
  18. 18.
    Bardajee GR, Hooshyar Z, Rezanezhad H (2012) A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. J Inorg Biochem 117:367–373CrossRefGoogle Scholar
  19. 19.
    Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82ADSCrossRefGoogle Scholar
  20. 20.
    Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomedicine 5:875–887CrossRefGoogle Scholar
  21. 21.
    Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39:4459–4463ADSCrossRefGoogle Scholar
  22. 22.
    Vimala K, Mohan YM, Varaprasad K, Redd NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated Chitosan–PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55–64CrossRefGoogle Scholar
  23. 23.
    Ma YQ, Yi JZ, Zhang LM (2009) A facile approach to incorporate silver nanoparticles into dextran-based hydrogels for antibacterial and catalytical application. J Macromol Sci A Pure Appl Chem 46(6):643–648CrossRefGoogle Scholar
  24. 24.
    Henglein A (1995) Electronics of colloidal nanometer particles. Ber Bunsenges Phys Chem 99(7):903–913CrossRefGoogle Scholar
  25. 25.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  26. 26.
    Pradhan N, Jana NR, Mallick K, Pal T (2000) Seed mediated growth: a convenient way for size control in nanoparticle synthesis. Surf Sci Technol 16:188–195Google Scholar
  27. 27.
    Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan-PVA hydrogel as nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. Nadtoka
    • 1
  • N. Kutsevol
    • 1
  • O. Linnik
    • 2
  • M. Nikiforov
    • 3
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Chuiko Institute of Surface Chemistry, National Academy of Science of UkraineKyivUkraine
  3. 3.Military Institute of Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations