Computational Studies of Adsorption of Toxic Molecules and Anions on the Surface of Doped and Functionalized Carbon Nanotubes

  • V. Borysiuk
  • S. G. Nedilko
  • Yu. Hizhnyi
  • A. Shyichuk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)


Carbon nanotubes are perspective adsorbents for removal of toxic pollutants from surrounding media. The electronic structure-related computational modeling of adsorption has been recognized as a powerful tool for prediction of adsorption capabilities of real CNT-based materials. This chapter describes application of such computational modeling to two perspective applications of the CNT-based materials: (a) elaboration of the resistivity sensors of hydrogen halide molecules HX (X = F, Cl, Br) which are toxic industrial gaseous pollutants and (b) removal of toxic anions of M(VI) (M(VI) = Cr, Mo, W) metals from ambient atmosphere and water. Results of the density functional theory (DFT)-based electronic structure calculations of adsorption of HX molecules and M(VI)O42−, Cr2O72−, and HCrO4 anions on the surface of pristine, B(N)-doped, and functionalized by functional groups (–COOH, –COO, –OH, and –NH3+) CNTs and graphene sheets are analyzed in the context of the mentioned applications. The influence of the tube structure and curvature, type of X, type of doping (B of N) on adsorption characteristics of “HX on CNT” system is analyzed and discussed in regards to elaboration of gas sensors. The influence of the CNT structure, B(N)-doping, and functionalization on absorption capabilities of CNTs with respect to anions of M(VI) metals is analyzed in terms of interatomic chemical bonds between the CNTs and adsorbed anions. This allowed making several important inferences regarding modification of the CNT-based materials for efficient removal of the anions from surrounding media. Possibility of detection of CrO42− anions adsorbed the CNT surface by the spectroscopic technique is analyzed.


Carbon nanotubes Electronic structure Adsorption Hydrogen halide Molecular anions Density functional theory 



The calculations were performed using Bem supercomputer of Wroclaw Center for Networking and Supercomputing (grant no. 300).


  1. 1.
    Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano-materials. Arab J Chem.
  2. 2.
    Gupta VK et al (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118CrossRefGoogle Scholar
  3. 3.
    Mohmood I et al (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20:1239–1260CrossRefGoogle Scholar
  4. 4.
    Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410CrossRefGoogle Scholar
  5. 5.
    Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231CrossRefGoogle Scholar
  6. 6.
    Mendoza F et al (2014) Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sensors Actuators B Chem 190:227–233CrossRefGoogle Scholar
  7. 7.
    Fam DWH, Palaniappan A, Tok AIY, Liedberg B, Moochhala SM (2011) A review on technological aspects influencing commercialization of carbon nanotube sensors – ScienceDirect. Sensors Actuators B Chem 157(1):1–7CrossRefGoogle Scholar
  8. 8.
    Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sensors. CrossRefGoogle Scholar
  9. 9.
    Mittal M, Kumar A (2014) Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sensors Actuators B Chem 203:349–362CrossRefGoogle Scholar
  10. 10.
    Lee K et al (2013) Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Sensors Actuators B Chem 188:571–575CrossRefGoogle Scholar
  11. 11.
    Ueda T, Katsuki S, Takahashi K, Narges HA, Ikegami T, Mitsugi F (2008) Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature. Diam Relat Mater 17(7–10):1586–1589ADSCrossRefGoogle Scholar
  12. 12.
    Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47(35):6550–6570CrossRefGoogle Scholar
  13. 13.
    Cazorla C (2015) The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coord Chem Rev 300:142–163CrossRefGoogle Scholar
  14. 14.
    Bai L, Zhou Z (2007) Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Carbon 45:2105–2110CrossRefGoogle Scholar
  15. 15.
    Zhou Z, Gao X, Yan J, Song D (2006) Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon 44:939–947CrossRefGoogle Scholar
  16. 16.
    Villalpando-Páez F et al (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386:137–143ADSCrossRefGoogle Scholar
  17. 17.
    Wang R, Zhang D, Zhang Y, Liu C (2006) Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J Phys Chem B 110:18267–18271CrossRefGoogle Scholar
  18. 18.
    Adjizian J-J et al (2014) Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon 66:662–673CrossRefGoogle Scholar
  19. 19.
    An W, Turner CH (2009) Electronic structure calculations of gas adsorption on boron-doped carbon nanotubes sensitized with tungsten. Chem Phys Lett 482:274–280ADSCrossRefGoogle Scholar
  20. 20.
    Talla JA (2012) Ab initio simulations of doped single-walled carbon nanotube sensors. Chem Phys 392:71–77ADSCrossRefGoogle Scholar
  21. 21.
    Vikramaditya T, Sumithra K (2014) Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. J Comput Chem 35:586–594CrossRefGoogle Scholar
  22. 22.
    Anderson B et al (2005) Encyclopedia of toxicology, four-volume set: encyclopedia of toxicology, 2nd edn. Academic Press, Oxford, p 2000Google Scholar
  23. 23.
    Aylón E et al (2007) Emissions from the combustion of gas-phase products at tyre pyrolysis. J Anal Appl Pyrolysis 79:210–214CrossRefGoogle Scholar
  24. 24.
    Hall WJ, Williams PT (2006) Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. J Anal Appl Pyrolysis 77:75–82CrossRefGoogle Scholar
  25. 25.
    Barontini F, Cozzani V (2006) Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards. J Anal Appl Pyrolysis 77:41–55CrossRefGoogle Scholar
  26. 26.
    Karama JPB et al (2013) Modeling the emission of hydrogen chloride and free chlorine from the thermal treatment of polyvinyl chloride- (PVC-) based plastic materials. J Anal Appl Pyrolysis 101:209–214CrossRefGoogle Scholar
  27. 27.
    Stavert DM, Archuleta DC, Behr MJ, Lehnert BE (1991) Relative acute toxicities of hydrogen fluoride, hydrogen chloride, and hydrogen bromide in nose- and pseudo-mouth-breathing rats. Fundam Appl Toxicol 16:636–655CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Datta S, Vero SE, Hettiarachchi GM, Johannesson K (2017) Tungsten contamination of soils and sediments: current state of science. Current Pollution Rep 3:55–64CrossRefGoogle Scholar
  30. 30.
    Halmi MIE, Ahmad SA (2014) Chemistry, biochemistry, toxicity and pollution of molybdenum: a mini review. J Biochem Microbiol Biotechnol 2:1–6Google Scholar
  31. 31.
    Wang C-W, Liang C, Yeh H-J (2016) Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna. Chemosphere 147:82–87ADSCrossRefGoogle Scholar
  32. 32.
    Jung C et al (2013) Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol 106:63–71CrossRefGoogle Scholar
  33. 33.
    Tarutani N, Tokudome Y, Fukui M, Nakanishi K, Takahashi M (2015) Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable microcages for effective oxyanion adsorption. RSC Adv 5:57187–57192CrossRefGoogle Scholar
  34. 34.
    Xu Y, Arrigo R, Liu X, Su DS (2011) Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions. New Carbon Mater 26:57–62CrossRefGoogle Scholar
  35. 35.
    Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550CrossRefGoogle Scholar
  36. 36.
    Ihsanullah FA et al (2016) Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalin Water Treat 57:7232–7244CrossRefGoogle Scholar
  37. 37.
    Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075CrossRefGoogle Scholar
  38. 38.
    Verdugo EM, Xie Y, Baltrusaitis J, Cwiertny DM (2016) Hematite decorated multi-walled carbon nanotubes (α-Fe2O3/MWCNTs) as sorbents for Cu(II) and Cr(VI): comparison of hybrid sorbent performance to its nanomaterial building blocks. RSC Adv 6:99997–100007CrossRefGoogle Scholar
  39. 39.
    Ihsanullah FA et al (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161CrossRefGoogle Scholar
  40. 40.
    Emsley J (2011) Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, OxfordGoogle Scholar
  41. 41.
    Tytłak A, Oleszczuk P, Dobrowolski R (2015) Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environ Sci Pollut Res 22:5985–5994CrossRefGoogle Scholar
  42. 42.
    Palmer CD, Wittbrodt PR (1991) Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect 92:25–40CrossRefGoogle Scholar
  43. 43.
    Opperman DJ, Heerden E v (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1907–1913CrossRefGoogle Scholar
  44. 44.
    Shouman MA, Fathy NA, Khedr SA, Attia AA (2013) Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches. Adv Phys Chem. CrossRefGoogle Scholar
  45. 45.
    Dakiky M, Khamis M, Manassra A, Mer’eb M (2002) Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540CrossRefGoogle Scholar
  46. 46.
    Romero-González J, Peralta-Videa JR, Rodrı́guez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn 37:343–347CrossRefGoogle Scholar
  47. 47.
    Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283CrossRefGoogle Scholar
  48. 48.
    Boulding JR (1996) EPA environmental assessment sourcebook. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  49. 49.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58ADSCrossRefGoogle Scholar
  50. 50.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349ADSCrossRefGoogle Scholar
  51. 51.
    Tennent HG (1987) Carbon fibrils, method for producing same and compositions containing same. U.S. Patent No. 4,663,230. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  52. 52.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605ADSCrossRefGoogle Scholar
  53. 53.
    Saito R (1998) Raman spectra of carbon nanotubes. In: Physical properties of carbon nanotubes. Published by Imperial College Press and distributed by World Scientific Publishing Co., pp. 183–206.
  54. 54.
    Ajayan PM et al (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362:522–525ADSCrossRefGoogle Scholar
  55. 55.
    Charlier J-C, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732ADSCrossRefGoogle Scholar
  56. 56.
    Charlier JC (1991) First-principles study of the electronic properties of graphite. Phys Rev B 43:4579. Available at: Accessed 1 Dec 2018ADSCrossRefGoogle Scholar
  57. 57.
    Reich S, Thomsen C, Maultzsch J (2008) Carbon nanotubes: basic concepts and physical properties. Wiley, Hoboken, New Jersey, USAGoogle Scholar
  58. 58.
    Bertoni G, Calmels L (2006) First-principles calculation of the electronic structure and energy loss near edge spectra of chiral carbon nanotubes. Micron 37:486–491CrossRefGoogle Scholar
  59. 59.
    Borštnik U, Hodošček M, Janežič D, Lukovits I (2005) Electronic structure properties of carbon nanotubes obtained by density functional calculations. Chem Phys Lett 411:384–388ADSCrossRefGoogle Scholar
  60. 60.
    Ito A, Natsume Y, Ohmori S, Tanaka K (2002) Electronic structures of very thin carbon nanotubes: are they still π-electronic materials? Nano Lett 2:629–633ADSCrossRefGoogle Scholar
  61. 61.
    Boutko VG, Gusev AA, Shevtsova TN, Pashkevich YG (2011) Structural and electronic properties of single-wall carbon nanotubes with various nitrogen content. Low Temp Phys 37:1021–1025ADSCrossRefGoogle Scholar
  62. 62.
    Wang K, Shi C, Zhao N, Du X, Li J (2009) First-principles study of the B- or N-doping effects on chemical bonding characteristics between magnesium and single-walled carbon nanotubes. Chem Phys Lett 469:145–148ADSCrossRefGoogle Scholar
  63. 63.
    Buonocore F (2007) Doping effects on metallic and semiconductor single-wall carbon nanotubes. Philos Mag 87:1097–1105ADSCrossRefGoogle Scholar
  64. 64.
    D’yachkov PN, Kutlubaev DZ, Makaev DV (2010) Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities. Phys Rev B 82:035426ADSCrossRefGoogle Scholar
  65. 65.
    Esrafili MD (2013) Nitrogen-doped (6,0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors. Comput Theor Chem 1015:1–7CrossRefGoogle Scholar
  66. 66.
    Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176CrossRefGoogle Scholar
  67. 67.
    Fazio G, Ferrighi L, Di Valentin C (2014) Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode. J Catal 318:203–210CrossRefGoogle Scholar
  68. 68.
    Talla JA (2012) First principles modeling of boron-doped carbon nanotube sensors. Phys B Condens Matter 407:966–970ADSCrossRefGoogle Scholar
  69. 69.
    Ghasemi AS (2013) A DFT computation for comparison of NQR of O2, N2 and CO over the surface of Single-Walled Carbon Nanotubes Res. J Appl Sci Eng Tech 5:1892CrossRefGoogle Scholar
  70. 70.
    Hong G, Chen Y, Li P, Zhang J (2012) Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts. Carbon 50:2067–2082CrossRefGoogle Scholar
  71. 71.
    Sanchez-Valencia JR et al (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512:61–64ADSCrossRefGoogle Scholar
  72. 72.
    Valentini L et al (2003) Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl Phys Lett 82:961–963ADSCrossRefGoogle Scholar
  73. 73.
    Hizhnyi Y, Nedilko S, Borysiuk V, Shyichuk A (2018) Removal of oxoanions of MVI (MVI=Cr, Mo, W) metals by carbon nanostructures: insights into mechanisms from DFT calculations. Int J Quantum Chem 118:e25715CrossRefGoogle Scholar
  74. 74.
    Hizhnyi Y, Nedilko S, Borysiuk V, Shyichuk A (2017) Ab initio computational study of chromate molecular anion adsorption on the surfaces of pristine and B- or N-doped carbon nanotubes and graphene. Nanoscale Res Lett 12:71ADSCrossRefGoogle Scholar
  75. 75.
    Hizhnyi Y, Nedilko SG, Borysiuk V, Gubanov VA (2015) Computational studies of boron- and nitrogen-doped single-walled carbon nanotubes as potential sensor materials of hydrogen halide molecules HX (X = F, Cl, Br). Int J Quantum Chem 115:1475–1482CrossRefGoogle Scholar
  76. 76.
    Galano A (2006) On the influence of diameter and length on the properties of armchair single-walled carbon nanotubes: a theoretical chemistry approach. Chem Phys 327:159–170CrossRefGoogle Scholar
  77. 77.
    Petrushenko IK, Ivanov NA (2013) Structural and electronic properties of finite-length single-walled carbon and silicon carbide nanotubes: DFT study. Mod Phys Lett B 27:1350210ADSCrossRefGoogle Scholar
  78. 78.
    Vasiliev I, del Puerto ML, Jain M, Lugo-Solis A, Chelikowsky JR (2009) Application of time-dependent density-functional theory to molecules and nanostructures. J Mol Struct THEOCHEM 914:115–129CrossRefGoogle Scholar
  79. 79.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  80. 80.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377ADSCrossRefGoogle Scholar
  81. 81.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789ADSCrossRefGoogle Scholar
  82. 82.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023ADSCrossRefGoogle Scholar
  83. 83.
    Peterson KA, Figgen D, Dolg M, Stoll H (2007) Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. J Chem Phys 126:124101ADSCrossRefGoogle Scholar
  84. 84.
    Figgen D, Peterson KA, Dolg M, Stoll H (2009) Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. J Chem Phys 130:164108ADSCrossRefGoogle Scholar
  85. 85.
    Kumari I, Gupta S, Goel N (2016) A DFT based investigation of NO oxidation by (CrO3)3 cluster. Comput Theor Chem 1091:107–114CrossRefGoogle Scholar
  86. 86.
    Zhai H-J, Li S, Dixon DA, Wang L-S (2008) Probing the electronic and structural properties of chromium oxide clusters (CrO3)n− and (CrO3)n (n = 1–5): photoelectron spectroscopy and density functional calculations. J Am Chem Soc 130:5167–5177CrossRefGoogle Scholar
  87. 87.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566ADSCrossRefGoogle Scholar
  88. 88.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives (Dedicated to Professor Keiji Morokuma in celebration of his 65th birthday). J Mol Struct THEOCHEM 461–462:1–21CrossRefGoogle Scholar
  89. 89.
    Chung LW et al (2015) The ONIOM method and its applications. CrossRefGoogle Scholar
  90. 90.
    Seidu I, Krykunov M, Ziegler T (2015) Applications of time-dependent and time-independent density functional theory to electronic transitions in tetrahedral d0 metal oxides. J Chem Theory Comput 11:4041–4053CrossRefGoogle Scholar
  91. 91.
    Minkin VI (1999) Glossary of terms used in theoretical organic chemistry. Pure Appl Chem 71:1919–1981CrossRefGoogle Scholar
  92. 92.
    Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, LondonGoogle Scholar
  93. 93.
    Owen S, Hoeben P, Headlee M (2014) Chemistry for the IB diploma coursebook with free online material. Cambridge University Press, Cambridge, England, UKGoogle Scholar
  94. 94.
    Haynes WM (ed) (2014) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  95. 95.
    Johnson LW, McGlynn SP (1970) The electronic absorption spectrum of chromate ion. Chem Phys Lett 7:618–620ADSCrossRefGoogle Scholar
  96. 96.
    Mercuri F, Baldoni M, Sgamellotti A (2012) Towards nano-organic chemistry: perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures. Nanoscale 4:369–379ADSCrossRefGoogle Scholar
  97. 97.
    Ewels CP, Glerup M (2005) Nitrogen Doping in Carbon Nanotubes. J Nanosci Nanotechnol 5:1345–1363CrossRefGoogle Scholar
  98. 98.
    Lee C-G, Kim S-B (2016) Cr(VI) adsorption to magnetic iron oxide nanoparticle-multi-walled carbon nanotube adsorbents. Water Environ Res 88(11):2111–2120. CrossRefGoogle Scholar
  99. 99.
    Bhaumik M, Agarwal S, Gupta VK, Maity A (2016) Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J Colloid Interface Sci 470:257–267ADSCrossRefGoogle Scholar
  100. 100.
    Dehghani MH et al (2015) Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 279:344–352CrossRefGoogle Scholar
  101. 101.
    Georgakilas V et al (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 0:3050–3051CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Borysiuk
    • 1
  • S. G. Nedilko
    • 1
  • Yu. Hizhnyi
    • 1
  • A. Shyichuk
    • 2
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Rare Earth, Faculty of ChemistryAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations