Change in Functional State of Bone Marrow-Derived Mesenchymal Stem Cells After Incubation with Silver Nanoparticles

  • N. A. Volkova
  • M. S. Yukhta
  • E. V. Pavlovich
  • A. N. Goltsev
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)


Despite of silver nanopaticles’ (AgNPs) widespread use, there is a serious lack of information concerning the toxicity of AgNPs to humans and their key cellular actions. The aim of the present study was an effect of different concentrations of 40 nm AgNPs and time of incubation on the viability, CD 44 expression, mitochondrial state, and apoptotic/necrotic processes in bone marrow-derived mesenchymal stem cells (MSCs). The obtained results suggested that 1-hour incubation with AgNPs in the concentrations of 2 and 4 μg/ml did not affect the viability and content of CD44-positive cells, as well as did not cause the development of necrosis/apoptosis processes and alteration of mitochondrial activity in MSCs. After AgNPs’ addition in the concentrations of 6 and 10 μg/ml there were a decrease of mitochondrial activity, percentage of viability cells and an increase of the number of apoptotic cells compared with the control samples of MSCs. An increase in the period of incubation with AgNPs (4–10 μg/ml) up to 1 day leads to a toxic effect on MSCs, which was manifested in the decrease of viability, content of CD44-positive cells (AgNPs 10 μg/ml), mitochondrial activity, and activation of apoptosis and necrosis. The obtained results are related to the field of applied nanotechnology, which extends to clinical medicine, especially in the development of addressed drug delivery to the target cells or organs.


Mesenchymal stem cells Silver nanoparticles Mitochondria Apoptosis Necrosis Cytofluorometry In vitro 7AAD Annexin Inhibition Suspension 



This work has been supported by project No 70/18-Н NAS of Ukraine “Biosafety and efficiency of interaction of inert metal nanoparticles with mesenchymal stem cells of bone marrow.”


  1. 1.
    Henig RM (2007) Our silver-coated future. Onearth 29(3):22–29Google Scholar
  2. 2.
    Lara HH, Garza-Treviсo EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9(3):30–39CrossRefGoogle Scholar
  3. 3.
    You C, Han C, Wang X et al (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9):9193–9201CrossRefGoogle Scholar
  4. 4.
    Faunce T, Watal A (2010) Nanosilver and global public health: international regulatory issues. Nanomedicine 5(4):617–632CrossRefGoogle Scholar
  5. 5.
    Lima R, Feitosa LO, Ballottin D (2013) Cytotoxicity and genotoxicity of biogenic silver nanoparticles. J Phys Conf Ser 429(2):8–11Google Scholar
  6. 6.
    Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(6):13608–13619CrossRefGoogle Scholar
  7. 7.
    Park MV, Neigh AM, Vermeulen JP et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(1):9810–9817CrossRefGoogle Scholar
  8. 8.
    Greulich C, Kittler S, Epple M et al (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch Surg 394(3):495–502CrossRefGoogle Scholar
  9. 9.
    Greulich C, Braun D, Peetsch A et al (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981–6987CrossRefGoogle Scholar
  10. 10.
    Kittler S, Greulich C, Gebauer JS et al (2009) Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Mater Chem 40(4):258–264Google Scholar
  11. 11.
    Kittler S, Greulich C, Diendorf J et al (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554CrossRefGoogle Scholar
  12. 12.
    Loza K, Diendorf J, Greulich C et al (2014) The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem 2(12):1634–1643CrossRefGoogle Scholar
  13. 13.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147ADSCrossRefGoogle Scholar
  14. 14.
    Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3):301–316CrossRefGoogle Scholar
  15. 15.
    Greulich C, Diendorf J, Simon T et al (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7(1):347–354CrossRefGoogle Scholar
  16. 16.
    De Lima R, Seabra AB, Durn N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32(4):867–879CrossRefGoogle Scholar
  17. 17.
    Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55(2):283–291CrossRefGoogle Scholar
  18. 18.
    Volkova N, Pavlovich O, Fesenko O et al (2017) Studies of the influence of gold nanoparticles on characteristics of mesenchymal stem cells. J Nanomater 2017:6934757CrossRefGoogle Scholar
  19. 19.
    Norkus M, Kilmartin L, Fay D et al (2013) The effect of temperature elevation on cryopreserved mesenchymal stem cells. CryoLetters 34(4):349–359Google Scholar
  20. 20.
    Soenen SJ, Manshian B, Montenegro JM et al (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6:5767–5783CrossRefGoogle Scholar
  21. 21.
    Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33CrossRefGoogle Scholar
  22. 22.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapу 8(4):315–317CrossRefGoogle Scholar
  23. 23.
    Kim K, Lee M, Park H (2006) Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 22(11):3490–3491CrossRefGoogle Scholar
  24. 24.
    Rim K-T, Song S-W, Kim H-Y (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work 4(4):177–186CrossRefGoogle Scholar
  25. 25.
    Pavlovich EV, Volkova NA (2015) Influence of gold nanoparticles on human fibroblast before and after cryopreservation. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, nano-optics, nanocomposites, and surface studies, Springer proceedings in physics 156. Springer, ChamGoogle Scholar
  26. 26.
    Cossarizza A, Baccaranicontri M, Kalashnikova G et al (1993) A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197(1):40–45CrossRefGoogle Scholar
  27. 27.
    Bressan E, Ferroni L, Gardin C et al (2013) Silver nanoparticles and mitochondrial interaction. Int J Dent 2013:312747CrossRefGoogle Scholar
  28. 28.
    AshaRani PV, Low Kah Mun G, Hande MP et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. A. Volkova
    • 1
  • M. S. Yukhta
    • 1
  • E. V. Pavlovich
    • 1
  • A. N. Goltsev
    • 1
  1. 1.Institute for Problems of Cryobiology and Сryomedicine of the National Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations