Advertisement

Features of the Influence of UFS/Raffinose Nanocomposites on In Vitro Cultivation of Gametes of Swine

  • O. V. Shcherbak
  • A. B. Zyuzyun
  • A. O. Sverhunov
  • A. O. Sverhunova
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

In this article are presented the results of the evaluation of biological activity of nanocomposites (NC), which was synthesized on the basis of ultrafine silica modified by the raffinose (UFS/raffinose), during in vitro cultivation of spermatozoa and oocytes of pigs. In order to experimentally assess the biological activity were used cryopreserved ejaculated spermatozoa from three boars from the Bank of Genetic Resources of Animals of the Institute of Animal Breeding and Genetics nd.a. M.V. Zubets NAAS and freshly extracted oocyte-cumulus complexes (OCCs) of pigs. Due to the study of the effect of different concentrations of UFS/raffinose, it was determined that 0.001% concentration of it has the least effect on reducing the viability of the decontaminated sperm of boars. The addition of different concentrations of UFS/raffinose did not contribute to the growth of sperm viability compared to control samples. The addition of 0.001% UFS/raffinose in the medium for in vitro cultivation of swine oocytes contributed to the recovery of meiosis and, possibly, development of a higher number of gametes to the stage of metaphase II (p < 0.01 of Student’s criterion). Thus, the ripening level in the study group reached 84.8%, which is 15.5% more than in the control group. This indicates a positive effect of 0.001% concentration of UFS/raffinose on porcine oocytes for in vitro cultivation.

Keywords

Ovaries Oocyte-cumulus complexes In vitro cultivation Spermatozoa 

References

  1. 1.
    Belous AM, Kriobiologija, Grishhenko VI (1994) Monografija. Pod redakciej Kalugina Ju. V. i Nikitina I. I. – K.: «Naukova dumka». 432 sGoogle Scholar
  2. 2.
    Zyuzyun AB, Shherbak OV, Osỳpchuk OS, Kovtun SI, Dzicyuk VV (2015) Zastosuvannya nanomaterialu v embriogenetỳchnij sỳstemi in vitro otrỳmannya embrioniv svỳnej – Faktorỳ eksperỳmentaìnoyi evolyuciyi organizmiv: Zb. nauk. pr. Nacionaìna akademiya nauk Ukrayinỳ – K.: “Logos”. 17:164–168Google Scholar
  3. 3.
    Kovtun SI, Galagan NP, Shherbak OV, Trocz̀kỳj PA (2015) Metodỳchni rekomendaciyi z kriokonservaciyi spermatozoyidiv ta oocỳtiv siìs̀kogospodars̀kỳx tvarỳn i formuvannya embrioniv in vitro – Chubỳns̀ke. – 17 sGoogle Scholar
  4. 4.
    Novichkova DA, Kuz’mina TI, Shherbak OV, Galagan NP, Epishko OA (2017) Vlijanie nanochastic vysokodispersnogo kremnezema na morfologiju i intracitoplazmaticheskuju lokalizaciju lipidnyh kapel’ v oocitah svinej – Rozvedennja і genetika tvarin. – 53:284–292Google Scholar
  5. 5.
    Galagan NP, Patej LM, Nastasiyenko NS (2006) Nanokompozỳtỳ na osnovi vỳsokodỳspersnogo kremnezemu i biomolekul ta yix termichni peretvorennya – Nanosỳstemỳ, nanomaterialỳ, nanotexnologiyi : Zb. nauk. pr. – 4(3):599–612Google Scholar
  6. 6.
    Shherbak OV, Galagan NP, Trocz̀kỳj PA, Kovtun SI (2017) Zastosuvannya nanochastỳnok dioksỳdu kremniyu v texnologiyi formuvannya embrioniv svỳnej in vitro – Nanosỳstemỳ, nanomaterialỳ, nanotexnologiyi Nanosistemi, Nanomateriali, Nanotehnologii – 15:381–388 (Instỳtut metalofizỳkỳ im. G. V. Kurdyumova NAN Ukrayinỳ).Google Scholar
  7. 7.
    Shherbak OV, Zyuzyun AB, Osỳpchuk OS, Kovtun SI, Galagan NP, Trocz̀kỳj PA (2017) Vỳvchennya biologichnoyi aktỳvnosti nanomaterialu v umovax kuìtỳvuvannya spermatozoyidiv ta oocỳtiv svỳnej in vitro – Faktorỳ eksperỳmentaìnoyi evolyuciyi organizmiv: Zb. nauk. pr. // Nacionaìna akademiya nauk Ukrayinỳ – K.: “Logos”. – 20:256–259Google Scholar
  8. 8.
    Beebe LF, Mcllfatrick SM, Vassiliev IM, Nottle MB (2013) Development of an improved porcine embryo culture medium for cloning, transgenesis and embryonic stem cell isolation. Cloning Transgen 2:107Google Scholar
  9. 9.
    Bermejo-Alvarez P, Roberts RM, Rosenfeld CS (2012) Effect of glucose concentration during in vitro culture of mouse embryos on development to blastocyst, success of embryo transfer, and litter sex ratio. Mol Reprod Dev 79(5):329–336CrossRefGoogle Scholar
  10. 10.
    Castillo-Martín M, Yeste M, Morató R, Mogas T, Bonet S (2013) Cryotolerance of in vitro produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture. Reprod Fertil Dev 25(5):737–745CrossRefGoogle Scholar
  11. 11.
    Pradeep PJ, Srijaya C, Zain RBM, Papini A, Chatterji AK (2011) Caryologia. A simple technique for chromosome preparation from embryonic tissues of teleosts for ploidy verification. Caryologia 64(2):233–239CrossRefGoogle Scholar
  12. 12.
    Romar R, Coy P, Rath D (2012) Maturation conditions and boar affect timing of cortical reaction in porcine oocytes. Theriogenology 78:1126–1139CrossRefGoogle Scholar
  13. 13.
    Romar R, Funahashi H, Coy P (2016) In vitro fertilization in pigs: new molecules and protocols to consider in the forthcoming years. Theriogenology 85:125–134CrossRefGoogle Scholar
  14. 14.
    Nedava VE (1990) Ispolzovanie aerosilov v praktike iskusstvennogo osemeneniya – Using aerosil in practice artificial insemination. Zootechniya 8:63–65Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. V. Shcherbak
    • 1
  • A. B. Zyuzyun
    • 1
  • A. O. Sverhunov
    • 2
  • A. O. Sverhunova
    • 3
  1. 1.Institute of Animal Breeding and Genetics nd.a. M.V. Zubets, National Academy of Agrarian Science of UkraineKievUkraine
  2. 2.Kharkiv State Zooveterinarian AcademyKharkivUkraine
  3. 3.Kharkiv National Medical UniversityKharkivUkraine

Personalised recommendations