Skip to main content

Effect of Porosity on Ion Transport Through Polymers and Polymer-Based Composites Containing Inorganic Nanoparticles (Review)

  • Conference paper
  • First Online:
Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 222))

Included in the following conference series:

Abstract

This chapter is devoted to organic-inorganic composite ion exchange resins and membranes. We ascertain interrelation between composition, morphology, and porous structure of the materials on the one hand and ion transport through them on the other hand. The composites for different practical application (fuel cells, ion exchange columns, electrodialysis) are in a focus of attention. Porosity of the polymer constituent was determined with a method of standard contact porosimetry, which gives information about pores in a very wide diapason (from 2 nm to 200 μm). In this context, pore formation in ion exchange polymers during swelling is considered. A number of parameters, which are obtained from porosimetric measurements, can be used for interpretation of ion transport regularities, particularly evolution of electrical conductivity. Embedded non-aggregated nanoparticles, their aggregates, and agglomerates differently affect porosity of the polymer constituent: they are able to block, stretch, and squeeze pores. As a result, the composites demonstrate different rate of ion transport depending on amount and size of inorganic particles, which can be formed purposefully. The approach to the formation of one or other types of particles has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisenberg A, Yeager HL (eds) (1982) Perfluorinated ionomer membranes. ACS Symp Ser, vol 180. American Chemical Society, Washington

    Google Scholar 

  2. Hsu WY, Gierke TD (1983) Ion transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307–326

    Article  Google Scholar 

  3. Kononenko NA, Berezina NP, Vol’fkovich YM et al (1985) Investigation of ion-exchange materials structure by standard porosimetry method. J Appl Chem USSR 58:2029–2033

    Google Scholar 

  4. Berezina NP, Kononenko NA, Vol’fkovich YM (1994) Hydrophilic properties of heterogeneous ion-exchange membranes. Russ J Electrochem 30:329–335

    Google Scholar 

  5. Guizard C, Bac A, Barboiu M et al (2001) Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies. Separ Purif Technol 25:167–180

    Article  Google Scholar 

  6. Kraytsberg A, Eiu-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330

    Article  Google Scholar 

  7. Kononenko NA, Fomenko MA, Volfkovich YM (2015) Structure of perfluorinated membranes investigated by method of standard contact porosimetry. Adv Colloid Interf Sci 222:425–435

    Article  Google Scholar 

  8. Eisenberg A (1970) Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3:147–154

    Article  ADS  Google Scholar 

  9. Dreifus B (1986) Clustering and hydration in ionomers. In: Eisenberg A, Bailey FE (eds) Coulombic interaction in macromolecular systems. ACS Symp Ser, vol 302. American Chemical Society, Washington, DC, pp 103–119

    Chapter  Google Scholar 

  10. James PJ, Elliott JA, McMaster TJ et al (2000) Hydration of Nafion studied by AFM and X-ray scattering. J Mater Sci 35:5111–5119

    Article  ADS  Google Scholar 

  11. Young SK, Trevino SF, Beck Tan NC (2002) Small-angle neutron scattering investigation of structural changes in Nafion membranes induced by swelling with various solvents. J Polym Sci B Polym Phys 40:387–400

    Article  ADS  Google Scholar 

  12. Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2013) Conducting properties of a gel ionite modified with zirconium hydrophosphate nanoparticles. Russ J Electrochem 49:209–215

    Article  Google Scholar 

  13. Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL et al (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12:438

    Article  ADS  Google Scholar 

  14. Dzyazko Y, Rozhdestveskaya L, Zmievskii Y et al (2015) Heterogeneous membranes modified with nanoparticles of inorganic ion-exchangers for whey demineralization. Mater Today: Proc 6:3864–3873

    Google Scholar 

  15. Kononenko N, Nikonenko V, Grande D et al (2017) Porous structure of ion exchange membranes investigated by various technique. Adv Colloid Interf Sci 246:196–216

    Article  Google Scholar 

  16. Helfferich F (1995) Ion exchange. Dover, New York

    Google Scholar 

  17. Laporta M, Pegoraro M, Zanderighi L (1999) Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity. Phys Chem Chem Phys 1:4619–4628

    Article  Google Scholar 

  18. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  Google Scholar 

  19. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7:75–83

    Article  ADS  Google Scholar 

  20. Berezina NP, Kononenko NA, Dyomina OA et al (2008) Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid Interf Sci 139:3–28

    Article  Google Scholar 

  21. Nikonenko VV, Yaroslavtsev AB, Pourcelly G (2012) Ion transfer through charged membranes: structure, properties, and theory. In: Ciferri A, Perico A (eds) Ionic interactions in natural and synthetic macromolecules. Wiley, Hoboken, pp 267–335

    Chapter  Google Scholar 

  22. Dzyazko YS, Ponomaryova LN, Volfkovich YM et al (2013) Polymer ion-exchangers modified with zirconium Hydrophosphate for removal of Cd2+ ions from diluted solutions. Sep Sci Technol 48:2140–2149

    Article  Google Scholar 

  23. Dzyazko YS, Ponomaryova LN, Volfkovich YM et al (2014) Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous Mesoporous Mater 198:55–62

    Article  Google Scholar 

  24. Volfkovich YM (1984) Influence of the electric double layer on the internal interfaces in an ion-exchanger on its electrochemical and sorption properties. Soviet Electrochem 20(5):621–628

    Google Scholar 

  25. Mark JE (2007) Physical properties of polymers handbook, 2nd edn. Springer, New York

    Book  Google Scholar 

  26. Kimoto K (1983) Water absorption and Donnan equilibria of per-fluoroionomer membranes for the chlor-alkali process. Electrochem Sci Technol 130:334–341

    Article  Google Scholar 

  27. Flory PJ, Rehner JJ (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526

    Article  ADS  Google Scholar 

  28. Pushpa KK, Nandan D, Iyer RM (1988) Thermodynamics of water sorption by perfluorosulphonate (Nafion-117) and polystyrene–divinylbenzene sulphonate (Dowex 50W) ion-exchange resins at 298 ± 1 K. J Chem Soc Faraday Trans 1(84):2047–2056

    Article  Google Scholar 

  29. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979

    Article  Google Scholar 

  30. Sanchez C, Julián B, Belleville P et al (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  31. Perlova N, Dzyazko Y, Perlova O et al (2014) Formation of zirconium hydrophosphate nanoparticles and their effect on sorption of uranyl cations. Nanoscale Res Lett 12:209. https://doi.org/10.1186/s11671-017-1987-y

    Article  ADS  Google Scholar 

  32. Perlova O, Dzyazko Y, Halutska I et al (2018) Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. Springer Proc Phys 210:3–15

    Article  Google Scholar 

  33. Myerson AS (ed) (2002) Handbook of industrial crystallization. Butterworth-Heinemann, Woburn

    Google Scholar 

  34. Ekberg C, Källvenius G, Albinsson Y et al (2004) Studies on the hydrolytic behavior of zirconium(IV). J Solut Chem 33(1):47–79

    Article  Google Scholar 

  35. Kobayashi T, Sasaki T, Takagi I et al (2007) Solubility of zirconium(IV) hydrous oxides. J Nucl Sci Technol 44(1):90–94

    Article  Google Scholar 

  36. Dzyazko YS, Volfkovich YM, Sosenkin VE et al (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Lett 9:271. https://doi.org/10.1186/1556-276X-9-271

    Article  ADS  Google Scholar 

  37. Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica 47:153–165

    Article  Google Scholar 

  38. Zmievskii Y, Rozhdestvenska L, Dzyazko Y et al (2017) Organic-inorganic materials for baromembrane separation. Springer Proc Phys 195:675–686

    Article  Google Scholar 

  39. Zhang Q, Jiang P, Pan B et al (2009) Impregnating zirconium phosphate onto porous polymers for lead removal from waters: effect of nanosized particles and polymer chemistry. Ind Eng Chem Res 48:4495–4499

    Article  Google Scholar 

  40. Jia K, Pan B, Lv L et al (2009) Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. J Colloid Interface Sci 331:453–457

    Article  ADS  Google Scholar 

  41. Pan B, Pan B, Chen X et al (2006) Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. Water Res 40(15):2938–2946

    Article  Google Scholar 

  42. Yang C, Srinivasan S, Aricò AS et al (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid-State Lett 4:A31–A34

    Article  Google Scholar 

  43. Chabé J, Bardet M, Gébel G (2012) NMR and X-ray diffraction study of the phases of zirconium phosphate incorporated in a composite membrane Nafion®-ZrP. Solid State Ionics 229:20–25

    Article  Google Scholar 

  44. Nicotera I, Khalfan A, Goenaga G et al (2008) NMR investigation of water and methanol mobility in nanocomposite fuel cell membranes. Ionics 14:243–253

    Article  Google Scholar 

  45. Dzyazko YS, Trachevskii VV, Rozhdestvenskaya LM et al (2013) Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate. Russ J Phys Chem A 87(5):840–845

    Article  Google Scholar 

  46. Nussinovitch A (2010) Polymer macro- and micro-gel beads: fundamentals and applications. Springer, New York/Dordrecht/Heidelberg/London

    Book  Google Scholar 

  47. Gregg SJ, Sing KSW (1991) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  48. Harland CE (1994) Ion exchange-theory and practice, 2nd edn. RSC Publisher, Letchworth

    Google Scholar 

  49. Brun M, Quinson JF, Blanc R et al (1981) Caractérisation texturale de résines en milieu réactionnel. Macromol Chem Phys 182:873–882

    Article  Google Scholar 

  50. Rouquerol J, Baron G, Denoyel R et al (2011) Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC technical report). Pure Appl Chem 84:107–136

    Article  Google Scholar 

  51. Volfkovich YM, Bagotsky VS (2014) Experimental methods for investigations of porous materials and powders. In: YuM V, Filippov AN, Bagotsky VS (eds) Structural properties of different materials and powders used in different fields of science and technology. Springer, London/Heidelberg/New York/Dordrecht, pp 1–8

    Google Scholar 

  52. Volfkovich YM, Sosenkin VE (2012) Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ Chem Rev 81:936–959

    Article  Google Scholar 

  53. Volfkovich YM, Sakars AV, Volinsky AA (2005) Application of the standard porosimetry method for nanomaterials. Int J Nanotechnol 2:292–302

    Article  Google Scholar 

  54. Dzyazko YS, Volfkovich YM, Ponomaryova LN et al (2016) Composite ion-exchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation. J Nanosci Technol 2:43–49

    Google Scholar 

  55. Dzyazko YS, Perlova OV, Perlova NA et al (2017) Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin Water Treat 69:142–152

    Article  Google Scholar 

  56. Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2012) Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ J Phys Chem 86:913–919

    Article  Google Scholar 

  57. Zabolotskii VI, Protasov KV, Sharafan MV (2010) Sodium chloride concentration by electrodialysis with hybrid organic-inorganic ion-exchange membranes: an investigation of the process. Russ J Electrochem 46:979–986

    Article  Google Scholar 

  58. Novikova SA, Safronova EY, Lysova AA et al (2010) Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane. Mendeleev Commun 20:156–157

    Article  Google Scholar 

  59. Nagarale RK, Gohil GS, Shahi VK et al (2004) Organic-inorganic hybrid membrane: thermally stable cation-exchange membrane prepared by the sol-gel method. Macromolecules 37:10023–10030

    Article  ADS  Google Scholar 

  60. Khan AA, Khan A, Inamuddin (2007) Preparation and characterization of a new organic–inorganic nano-composite poly-o-toluidine Th(IV) phosphate: its analytical applications as cation-exchanger and in making ion-selective electrode. Talanta 72(2):699–710

    Article  Google Scholar 

  61. Dzyazko Y, Ponomarova L, Volfkovich Y et al (2016) Influence of zirconium hydrophosphate nanoparticles on porous structure and sorption capacity of the composites based on ion exchange resin. Ch Ch Technol 19:329–335

    Article  Google Scholar 

  62. Ponomarova L, Dzyazko Y, Volfkovich Y et al (2018) Effect of incorporated inorganic nanoparticles on porous structure and functional properties of strongly and weakly acidic ion exchangers. Springer Proc Phys 214:63–77

    Article  Google Scholar 

  63. Sahu AK, Bhat SD, Pitchumani S et al (2009) Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs. J Membr Sci 345:305–314

    Article  Google Scholar 

  64. Alberti G, Casciola M, Capitani D et al (2007) Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim Acta 52:8125–8132

    Article  Google Scholar 

  65. Bryk MT, Zabolotsky VI, Atamanenko D et al (1989) Structural inhomogeneity of ion-exchange membranes in swelling state and methods of its investigations. Khim Tekhnol Vody 11:491–498

    Google Scholar 

  66. Taherian R (2016) Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol 123:17–31

    Article  Google Scholar 

  67. Casciola M, Alberti G, Ciarletta A et al (2005) Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: preparation and proton conductivity. Solid State Ionics 176:2985–2989

    Article  Google Scholar 

  68. Khan AA, Alam MM, Inamuddin et al (2004) Electrical conductivity and ion-exchange kinetic studies of a crystalline type ‘organic–inorganic’ cation-exchange material: polypyrrole/polyantimonic acid composite system, (Sb2O5) (–C4H2NH–)·nH2O. J Electroanal Chem 572:67–67

    Article  Google Scholar 

  69. Khan AA, Paquiza L (2011) Electrical behavior of conducting polymer based ‘polymeric–inorganic’ nanocomposite: polyaniline and polypyrrole zirconium titanium phosphate. Synth Met 161:899–905

    Article  Google Scholar 

  70. Kuznetsova EV, Safronova EY, Ivanov VK et al (2013) Transport properties of hybrid materials based on MF-4SC perfluorinated ion exchange membranes and nanosized ceria. Nanotechnol Russ 8:461–465

    Article  Google Scholar 

  71. Tong X, Zhang B, Fan Y et al (2017) Mechanism exploration of ion transport in nanocomposite cation exchange membranes. ACS Publ. Appl Mater Interfaces 9:13491–13499

    Article  Google Scholar 

  72. Yaroslavtsev AB, Yampolskii YP (2014) Hybrid membranes containing inorganic nanoparticles. Mendeleev Commun 24:319–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dzyazko, Y., Volfkovich, Y., Perlova, O., Ponomaryova, L., Perlova, N., Kolomiets, E. (2019). Effect of Porosity on Ion Transport Through Polymers and Polymer-Based Composites Containing Inorganic Nanoparticles (Review). In: Fesenko, O., Yatsenko, L. (eds) Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-17755-3_16

Download citation

Publish with us

Policies and ethics