Advertisement

SiO2/n-Si Template for Copper Nanostructure Formation

  • Egor Kaniukov
  • Dzmitry Yakimchuk
  • Victoria Bundyukova
  • Alexander Petrov
  • Evgenii Belonogov
  • Sergey Demyanov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 222)

Abstract

This work aims to study the possibility of using SiO2/n-Si porous template to the formation of copper nanostructures with different morphology for the surface-enhanced Raman spectroscopy (SERS) applications. Porous SiO2/n-Si templates were obtained using swift heavy ion-track technology including irradiation and chemical etching. The influence of the ion energy on the process of latent track formation was discussed. The dependences of pores template parameters on the irradiation fluence and etching time were investigated. In the pores of the SiO2/n-Si template by the electrodeposition method, spatially separated copper nanostructures with different morphology (compact deposit and dendrites) have been formed. Morphological and structural characteristics of SiO2(Cu)/n-Si nanostructures were studied. The possibility of tailoring of copper nanostructures shape by variation of deposition potential was shown. An analysis of the efficiency of the SERS using the water solution of the model analyte Rhodamine 6G was made. The potential of using copper dendrites for the SERS was discussed.

Keywords

Ion track technology Template synthesis Electrochemistry Crystal growth Nanostructures Dendrites Morphology SERS 

References

  1. 1.
    Sanchez F, Sobolev K (2010) Nanotechnology in concrete – a review. Constr Build Mater 24(11):2060–2071CrossRefGoogle Scholar
  2. 2.
    Manukyan A, Gyulasaryan H, Ginoyan A, Kaniukov E, Petrov A, Yakimchuk D, Shashov S, Nurijanyan M, Mirzakhanyan A (2016) Structural, morphological and magnetic properties of nickel-carbon nanocomposites prepared by solid-phase pyrolysis of Ni Phthalocyanine. Fundam Appl Nano-Electromagnetics 1:273–290CrossRefGoogle Scholar
  3. 3.
    Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115(10):3887–3896CrossRefGoogle Scholar
  4. 4.
    Shao Q, Que R, Shao M, Cheng L, Lee S-T (2012) Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering. Adv Funct Mater 22(10):2067–2070CrossRefGoogle Scholar
  5. 5.
    Prunier H, Ricolleau C, Nelayah J, Wang G, Alloyeau D (2014) Original anisotropic growth mode of copper nanorods by vapor phase deposition. Cryst Growth Des 14(12):6350–6356CrossRefGoogle Scholar
  6. 6.
    Kaniukov EY, Kozlovsky AL, Shlimas DI, Zdorovets MV, Yakimchuk DV, Shumskaya EE, Kadyrzhanov KK (2017) Electrochemically deposited copper nanotubes. J Surf Invest: X-Ray, Synchrotron Neutron Tech 11(1):270–275CrossRefGoogle Scholar
  7. 7.
    Filankembo A, Giorgio S, Lisiecki I, Pileni MP (2003) Is the anion the major parameter in the shape control of nanocrystals? J Phys Chem B 107(30):7492–7500CrossRefGoogle Scholar
  8. 8.
    Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3(2):231–234ADSCrossRefGoogle Scholar
  9. 9.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301CrossRefGoogle Scholar
  10. 10.
    Kaniukov E, Kozlovsky A, Shlimas D, Yakimchuk D, Zdorovets M, Kadyrzhanov K (2016) Tunable synthesis of copper nanotubes. IOP Conf Series: Mater Sci Eng 110:012013CrossRefGoogle Scholar
  11. 11.
    Qiu R, Cha HG, Noh HB, Shim YB, Zhang XL, Qiao R, Zhang D, Kim YI, Pal U, Kang YS (2009) Preparation of dendritic copper nanostructures and their characterization for electroreduction. J Phys Chem C 113(36):15891–15896CrossRefGoogle Scholar
  12. 12.
    Li Y, Fu Z-Y, Su B-L (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22(22):4634–4667CrossRefGoogle Scholar
  13. 13.
    He Z, He J, Zhang Z (2015) Selective growth of metallic nanostructures on microstructured copper substrate in solution. CrystEngComm 17(38):7262–7269CrossRefGoogle Scholar
  14. 14.
    Plowman BJ, Jones LA, Bhargava SK (2015) Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem Commun 51(21):4331–4346CrossRefGoogle Scholar
  15. 15.
    Rashid MH, Mandal TK (2007) Synthesis and catalytic application of nanostructured silver dendrites. J Phys Chem C 111(45):16750–16760CrossRefGoogle Scholar
  16. 16.
    Fei Chan Y, Xing Zhang C, Long Wu Z, Mei Zhao D, Wang W, Jun Xu H, Sun XM (2013) Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl Phys Lett 102(18):183118ADSCrossRefGoogle Scholar
  17. 17.
    Trukhanov AV, Grabchikov SS, Vasiliev AN, Sharko SA, Mukhurov NI, Gasenkova IV (2014) Specific features of formation and growth mechanism of multilayered quasi-one-dimensional (Co-Ni-Fe)/Cu systems in pores of anodic alumina matrices. Crystallogr Rep 59(5):744–748ADSCrossRefGoogle Scholar
  18. 18.
    Kozlovskiy A, Meirimova T, Mashentseva A, Zdorovets M, Kanyukov E, Yakimchuk D, Petrov A, Kadyrzhanov K (2015) Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes. Chem Bull Kazakh National University 30(3):72–80CrossRefGoogle Scholar
  19. 19.
    Kozlovskiy AL, Korolkov IV, Kalkabay G, Ibragimova MA, Ibrayeva AD, Zdorovets MV, Mikulich VS, Yakimchuk DV, Shumskaya AE, Kaniukov EY (2017) Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching. J Nanomater 2017:1–9CrossRefGoogle Scholar
  20. 20.
    Djokić S, Nikolić N, Živković P, Popov K, Djokić N (2011) Electrodeposition and electroless deposition of metallic powders: a comparison. In: Nano, vol 33, pp 7–31Google Scholar
  21. 21.
    Zhang X, Wang G, Liu X, Wu H (2008) Copper dendrites: synthesis, mechanism discussion, and application in determination of L-tyrosine. Cryst Growth Des 8(4):1430–1434CrossRefGoogle Scholar
  22. 22.
    Ravi Kumar DV, Woo K, Moon J (2015) Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale 7(41):17195–17210ADSCrossRefGoogle Scholar
  23. 23.
    Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735ADSCrossRefGoogle Scholar
  24. 24.
    Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization—a review. Sci Technol Adv Mater 9(4):043001CrossRefGoogle Scholar
  25. 25.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science (New York, NY) 266(5193):1961–1966ADSCrossRefGoogle Scholar
  26. 26.
    Kaniukov EY, Shumskaya EE, Yakimchuk DV, Kozlovskiy AL, Ibragimova MA, Zdorovets MV (2017) Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J Contemp Phys (Armenian Acad Sci) 52(2):155–160ADSCrossRefGoogle Scholar
  27. 27.
    Kaniukov E, Shumskaya A, Yakimchuk D, Kozlovskiy A, Ibrayeva A, Zdorovets M (2017) Characterization of pet track membrane parameters. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies, and applications: Selected Proceedings of the 4th International Conference Nanotechnology and Nanomaterials (NANO2016), August 24–27, 2016, Lviv, Ukraine. Springer International Publishing, Cham, pp 79–91CrossRefGoogle Scholar
  28. 28.
    Kaniukov E, Shumskaya A, Yakimchuk D, Kozlovskiy A, Korolkov I, Ibragimova M, Zdorovets M, Kadyrzhanov K, Rusakov V, Fadeev M, Lobko E, Saunina К and Nikolaevich L (2018) FeNi nanotubes: perspective tool for targeted delivery. Appl Nanosci 1–10Google Scholar
  29. 29.
    Kaniukov EY, Shumskaya AE, Kutuzau MD, Bundyukova VD, Yakimchuk DV, Borgekov DB, Ibragimova MA, Korolkov IV, Giniyatova S, Kozlovskiy AL, Zdorovets MV (2019) Degradation mechanism and way of surface protection of nickel nanostructures. Mater Chem Phys 223:88–97CrossRefGoogle Scholar
  30. 30.
    Kozlovskiy A, Zdorovets M, Kadyrzhanov K, Korolkov I, Rusakov V, Nikolaevich L, Fesenko O, Budnyk O, Yakimchuk D, Shumskaya A and Kaniukov E. (2018) FeCo nanotubes: possible tool for targeted delivery of drugs and proteins. Appl Nanosci 1–9Google Scholar
  31. 31.
    Lee K-L, Huang J-B, Chang J-W, Wu S-H, Wei P-K (2015) Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Sci Rep 5:8547. -1-8547-8549CrossRefGoogle Scholar
  32. 32.
    Yakimchuk D, Kaniukov E, Bundyukova V, Osminkina L, Teichert S, Demyanov S, Sivakov V (2018) Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications. MRS Commun 8(1):95–99CrossRefGoogle Scholar
  33. 33.
    Kaniukov EY, Yakimchuk DV, Bundyukova VD, Shumskaya AE, Amirov AA, Demyanov SE (2018) Peculiarities of charge transfer in SiO2(Ni)/Si nanosystems. Adv Condens Matter Phys 2018:8CrossRefGoogle Scholar
  34. 34.
    Fink D (2004) Fundamentals of ion-irradiated polymers: fundamentals and applications. V. 1. Springer, Berlin–HeidelbergCrossRefGoogle Scholar
  35. 35.
    Bergamini F, Bianconi M, Cristiani S, Gallerani L, Nubile A, Petrini S, Sugliani S (2008) Ion track formation in low temperature silicon dioxide. Nucl Inst Methods Phys Res B 266(10):2475–2478ADSCrossRefGoogle Scholar
  36. 36.
    Komarov FF, Vlasukova LA, Kuchinskyi PV, Didyk AY, Skuratov VA, Voronova NA (2009) Etched track morphology in SiO2 irradiated with swift heavy ions. Lith J Phys 49(1):111–115CrossRefGoogle Scholar
  37. 37.
    Yakimchuk D, Bundyukova V, Smirnov A, Kaniukov E (2018) Express method of estimation of etched ion track parameters in silicon dioxide template. Phys Status Solidi B Basic Research 256:1800316ADSCrossRefGoogle Scholar
  38. 38.
    Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Inst Methods Phys Res B 166:903–912ADSCrossRefGoogle Scholar
  39. 39.
    Devine RAB (1994) Macroscopic and microscopic effects of radiation in amorphous SiO2. Nucl Instrum Methods Phys Res, Sect B 91:378–390ADSCrossRefGoogle Scholar
  40. 40.
    Dallanora A, Marcondes TL, Bermudez GG, Fichtner PFP, Trautmann C, Toulemonde M, Papaléo RM (2008) Nanoporous SiO2/Si thin layers produced by ion track etching: dependence on the ion energy and criterion for etchability. J Appl Phys 104(2):024307. -1–024307-8ADSCrossRefGoogle Scholar
  41. 41.
    Toulemonde M, Enault N, Fan JY, Studer F (1990) Does continuous trail of damage appear at the change in the electronic stopping power damage rate? J Appl Phys 68(4):1545–1549ADSCrossRefGoogle Scholar
  42. 42.
    Kaniukov EY, Ustarroz J, Yakimchuk DV, Petrova M, Terryn H, Sivakov V, Petrov AV (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27(11):115305ADSCrossRefGoogle Scholar
  43. 43.
    Kaniukov E, Yakimchuk D, Arzumanyan G, Terryn H, Baert K, Kozlovskiy A, Zdorovets M, Belonogov E, Demyanov S (2017) Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos Mag 97(26):2268–2283ADSCrossRefGoogle Scholar
  44. 44.
    Ivanova YA, Ivanou DK, Fedotov AK, Streltsov EA, Demyanov SE, Petrov AV, Kaniukov EY, Fink D (2007) Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template. J Mater Sci 42(22):9163–9169ADSCrossRefGoogle Scholar
  45. 45.
    Sivakov V, Kaniukov EY, Petrov AV, Korolik OV, Mazanik AV, Bochmann A, Teichert S, Hidi IJ, Schleusener A, Cialla D, Eugenia Toimil-Molares M, Trautmann C, Popp J, Demyanov SE (2014) Silver nanostructures formation in porous Si/SiO2 matrix. J Cryst Growth 400:21–26ADSCrossRefGoogle Scholar
  46. 46.
    Yakimchuk DV, Kaniukov EY, Demyanov SE, Bundyukova VD, Dzeinak AV, Makoed II, Arzumanyan GM, Doroshkevich NV, Mamatkulov KZ, Sivakov V (2017) Dependence of the surface-enhanced Raman scattering signal on the shape of silver nanostructures grown in the SiO2/n-Si porous template. Devices Methods Meas 8(3):228–235CrossRefGoogle Scholar
  47. 47.
    Yakimchuk DV, Kaniukov EY, Demyanov SE, Arzumanyan GM, Sivakov V (2017) SERS activity of silver nanostructures with different shape in pores of SiO2 template on n-Si. Physics, Chemistry and Application of Nanostructures: Reviews and Short Notes to Nanomeeting-2017. pp 216–219Google Scholar
  48. 48.
    Haas I, Shanmugam S, Gedanken A (2008) Synthesis of copper dendrite nanostructures by a sonoelectrochemical method. Chem Eur J 14:4696–4703CrossRefGoogle Scholar
  49. 49.
    Le Ru EC, Blackie EJ, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRefGoogle Scholar
  50. 50.
    Zhang R, Lin W, Lawrence K, Wong CP (2010) Highly reliable, low cost, isotropically conductive adhesives filled with Ag-coated Cu flakes for electronic packaging applications. Int J Adhes Adhes 30(6):403–407CrossRefGoogle Scholar
  51. 51.
    Chen Y, Xu Q, Hu B, Xu J, Weng J (2016) Unconventional synthesis of Cu–Au dendritic nanowires with enhanced electrochemical activity. RSC Adv 6(3):2464–2469CrossRefGoogle Scholar
  52. 52.
    Lee J-P, Chen D, Li X, Yoo S, Bottomley LA, El-Sayed MA, Park S, Liu M (2013) Well-organized raspberry-like Ag-Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. Nanoscale 5:11620–11624ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Egor Kaniukov
    • 1
  • Dzmitry Yakimchuk
    • 1
  • Victoria Bundyukova
    • 1
  • Alexander Petrov
    • 1
  • Evgenii Belonogov
    • 2
  • Sergey Demyanov
    • 1
  1. 1.Scientific-Practical Materials Research Centre, NAS of BelarusMinskBelarus
  2. 2.Voronezh State UniversityVoronezhRussian Federation

Personalised recommendations