Advertisement

Singular Surface Curves in the Resultant Thermodynamics of Shells

  • Violetta Konopińska-ZmysłowskaEmail author
  • Victor A. Eremeyev
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 110)

Abstract

Within six-parameter shells theory we discuss the governing equations of shells with material or non-material singular curves. By singular curve we mean a surface curve where are discontinuities in some surface fields. As an example we consider shells with junctions and shells undergoing stress-induced phase transitions.

Notes

Acknowledgements

The first author acknowledges financial support from the National Centre of Science of Poland with the grant DEC – 2012/05/D/ST8/02298.

References

  1. 1.
    Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  2. 2.
    Altenbach, H., Eremeyev, V.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Complex Syst. 3(3), 273–283 (2015)CrossRefGoogle Scholar
  3. 3.
    Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. J. Appl. Math. Mech. ZAMM 89(4), 242–256 (2009)CrossRefGoogle Scholar
  4. 4.
    Altenbach, H., Eremeyev, V.A.: Actual developments in the nonlinear shell theorystate of the art and new applications of the six-parameter shell theory. In: Pietraszkiewicz, W., Górski, J. (Eds.) Shell Structures: Theory and Applications, Taylor & Francis Group, London, vol. 3, pp. 3–12 (2014)Google Scholar
  5. 5.
    Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)CrossRefGoogle Scholar
  6. 6.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey (2008)CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, Oxford (2003)Google Scholar
  8. 8.
    Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47(3), 531–576 (1999)CrossRefGoogle Scholar
  9. 9.
    Bhattacharya, K., James, R.D.: The material is the machine. Science 307(5706), 53–54 (2005)CrossRefGoogle Scholar
  10. 10.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Elastoplastic law of Cosserat type in shell theory with drilling rotation. Math. Mech. Solids 20(7), 790–805 (2015)CrossRefGoogle Scholar
  11. 11.
    Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B: Eng. 107, 203–213 (2016)CrossRefGoogle Scholar
  12. 12.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model. J. Appl. Math. Mech. ZAMM 96(2), 191–204 (2016)CrossRefGoogle Scholar
  13. 13.
    Chernykh, K.F.: Linear Theory of Shells (in Russian). University Press, 1968 English Translation by NASA-TT-F-II (1964)Google Scholar
  14. 14.
    Chróścielewski, J., Witkowski, W.: On some constitutive equations for micropolar plates. ZAMM 90(1), 53–64 (2010)CrossRefGoogle Scholar
  15. 15.
    Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folder and multi-shells. Comp. Meth. Appl. Mech. Engrg. 141, 1–46 (1997)CrossRefGoogle Scholar
  16. 16.
    Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych (in Polish). Biblioteka Mechaniki Stosowanej, Wydawnictwo IPPT PAN (2004)Google Scholar
  17. 17.
    Chróścielewski, J., Pietraszkiewicz, W., Witkowski, W.: On shear correction factors in the non-linear theory of elastic shells. Int. J. Solids Struct. 47(25), 3537–3545 (2010)CrossRefGoogle Scholar
  18. 18.
    Chróścielewski, J., Konopińska, V., Pietraszkiewicz, W.: On elasto-plastic analysis of thin shells with deformable junctions. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures—Nonclassical Theories and Applications, pp. 441–452. Springer, Berlin (2011)CrossRefGoogle Scholar
  19. 19.
    Chróścielewski, J., Konopińska, V., Pietraszkiewicz, W.: On modelling and non-linear elasto-plastic analysis of thin shells with deformable junctions. J. Appl. Math. Mech. ZAMM 91(6), 477–484 (2011)CrossRefGoogle Scholar
  20. 20.
    Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory. Thin-Walled Struct. 105, 207–219 (2016)CrossRefGoogle Scholar
  21. 21.
    Cosserat, E., Cosserat, F.: Theorie des corps deformables. Herman et Fils, Paris (1909)Google Scholar
  22. 22.
    Cuomo, M., dell’Isola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. Part B: Eng. 115, 423–448 (2017)CrossRefGoogle Scholar
  23. 23.
    Dong, L., Sun, Q.P.: On equilibrium domains in superelastic NiTi tubes - helix versus cylinder. Int. J. Solids Struct. 49, 1063–1076 (2012)CrossRefGoogle Scholar
  24. 24.
    Eremeyev, V., Altenbach, H.: Basics of mechanics of micropolar shells. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures: Advanced Theories and Applications, pp. 63–111. Springer, Cham (2017)CrossRefGoogle Scholar
  25. 25.
    Eremeyev, V.A., Konopińska-Zmysłowska, V.: On phase equilibrium of an elastic liquid shell with wedge disclination. In: Pietraszkiewicz W, Witkowski W (eds) Shell Structures: Theory and Applications, vol. 4, Taylor & Francis Group, London, pp. 89–92 (2018)Google Scholar
  26. 26.
    Eremeyev, V.A., Konopińska-Zmysłowska, V.: On the correspondence between two- and three-dimensional Eshelby tensors. Continuum Mechanics and Thermodynamics  https://doi.org/10.1007/s00161-019-00754-6 (2019)
  27. 27.
    Eremeyev, V.A., Pietraszkiewicz, W.: The non-linear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)CrossRefGoogle Scholar
  28. 28.
    Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)CrossRefGoogle Scholar
  29. 29.
    Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)Google Scholar
  30. 30.
    Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)CrossRefGoogle Scholar
  31. 31.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)CrossRefGoogle Scholar
  32. 32.
    Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoviscoelastic shells. In: Hetnarski, R. (ed.) Encyclopedia of Thermal Stresses, pp. 3667–3673. Springer, Berlin (2015)Google Scholar
  33. 33.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)CrossRefGoogle Scholar
  34. 34.
    Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Eremeyev, V.A., Lebedev, L.P., Cloud, M.J.: The Rayleigh and Courant variational principles in the six-parameter shell theory. Math. Mech. Solids 20(7), 806–822 (2015)CrossRefGoogle Scholar
  36. 36.
    Eshelby, J.D.: The force on an elastic singularity. Phil. Trans. R Soc. Lond A 244(877), 87–112 (1951)CrossRefGoogle Scholar
  37. 37.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376–396 (1957)CrossRefGoogle Scholar
  38. 38.
    Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5(3–4), 321–335 (1975)CrossRefGoogle Scholar
  39. 39.
    Feng, P., Sun, Q.P.: Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J. Mech. Phys. Solids 54(8), 1568–1603 (2006)CrossRefGoogle Scholar
  40. 40.
    Giorgio, I., Grygoruk, R., dellIsola F, Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)CrossRefGoogle Scholar
  41. 41.
    Giorgio, I., Harrison, P., dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 474(2216), 20180,063 (2018)CrossRefGoogle Scholar
  42. 42.
    Giorgio, I., dell’Isola, F., Steigmann, D.J.: Edge effects in hypar nets. Comptes Rendus Mécanique (2019)Google Scholar
  43. 43.
    Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin (2000)Google Scholar
  44. 44.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  45. 45.
    He, Y.J., Sun, Q.P.: Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates. Int. J. Mech. Sci. 52, 198–211 (2010)CrossRefGoogle Scholar
  46. 46.
    Konopińska, V., Pietraszkiewicz, W.: Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells. Int. J. Solids Struct. 44(1), 352–369 (2007)CrossRefGoogle Scholar
  47. 47.
    Konopińska, V., Pietraszkiewicz, W.: On jump conditions at non-material singular curves in the resultant shell thermomechanics. In: Pietraszkiewicz, W., Górski, J. (Eds.) Shell Structures: Theory and Applications, vol. 3, Taylor & Francis Group, London, pp. 117–120 (2014)Google Scholar
  48. 48.
    Konopińska-Zmysłowska, V., Eremeyev, V.A.: On axially symmetric shell problems with reinforced junctions. In: Owen, R., de Borst, R., Reese, J., Pearce, C. (eds.) ECCM VI-ECFD VII Proceedings, pp. 3681–3688. ECCOMAS, Glasgow (2018)Google Scholar
  49. 49.
    Kosiński, W.: Field Singularities and Wave Analysis in Continuum Mechanics. Ellis Horwood, Chicester and PWN, Warszawa (1986)Google Scholar
  50. 50.
    Lagoudas, D.C. (Ed.): Shape Memory Alloys. Modeling and Engineering Applications, Springer, Berlin (2008)Google Scholar
  51. 51.
    Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271–371 (1983)CrossRefGoogle Scholar
  52. 52.
    Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  53. 53.
    Makowski, J., Pietraszkiewicz, W.: Thermomechanics of Shells with Singular Curves. Wydawnictwo IMP PAN, Gdańsk (2002)Google Scholar
  54. 54.
    Makowski, J., Pietraszkiewicz, W., Stumpf, H.: On the general form of jump conditions for thin irregular shells. Arch. Mech. 50(2), 483–495 (1998)Google Scholar
  55. 55.
    Makowski, J., Pietraszkiewicz, W., Stumpf, H.: Jump conditions in the non-linear theory of thin irregular shells. J. Elast. 54(1), 1–26 (1999)CrossRefGoogle Scholar
  56. 56.
    Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman Hall, London (1993)CrossRefGoogle Scholar
  57. 57.
    Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)Google Scholar
  58. 58.
    Maugin, G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. CRC Pressl, Boca Raton (2011)Google Scholar
  59. 59.
    Miśkiewicz, M.: Structural response of existing spatial truss roof construction based on cosserat rod theory. Contin. Mech. Thermodyn. 31(1), 79–99 (2019)CrossRefGoogle Scholar
  60. 60.
    Miyazaki, S., Fu, Y.Q., Huang, W.M. (eds.): Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2009)Google Scholar
  61. 61.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)CrossRefGoogle Scholar
  62. 62.
    Ng, K.L., Sun, Q.P.: Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes. Mech. Mater. 38(1–2), Sp. Iss. SI):41–56 (2006)CrossRefGoogle Scholar
  63. 63.
    Novozhilov, V.V., Chernykh, K.F., Mikhailovskii, E.I.: Linear Theory of Thin Shells (in Russian). Politekhnika, Leningrad (1991)Google Scholar
  64. 64.
    Pietraszkiewicz, W.: Refined resultant thermomechanics of shells. Int. J. Eng. Sci. 49(10), 1112–1124 (2011)CrossRefGoogle Scholar
  65. 65.
    Pietraszkiewicz, W.: On a description of deformable junctions in the resultant nonlinear shell theory. In: Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 457–468. Springer (2016)Google Scholar
  66. 66.
    Pietraszkiewicz, W.: The resultant linear six-field theory of elastic shells: what it brings to the classical linear shell models? J. Appl. Math. Mech. ZAMM 96(8), 899–915 (2016)CrossRefGoogle Scholar
  67. 67.
    Pietraszkiewicz, W., Konopińska, V.: On unique two-dimensional kinematics for the branching shells. Int. J. Solids Struct. 48, 2238–2244 (2011)CrossRefGoogle Scholar
  68. 68.
    Pietraszkiewicz, W., Konopińska, V.: Singular curve in the resultant thermomechanics of shells. Int. J. Eng. Sci. 80, 21–31 (2014)CrossRefGoogle Scholar
  69. 69.
    Pietraszkiewicz, W., Konopińska, V.: Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells. Int. J. Solids Struct. 51, 2133–2143 (2014)CrossRefGoogle Scholar
  70. 70.
    Pietraszkiewicz, W., Konopińska, V.: On refined constitutive equations in the six-field theory of elastic shells. In: Pietraszkiewicz, W., Górski, J. (Eds.) Shell Structures: Theory and Applications, vol. 3, Taylor & Francis Group, London, pp. 137–140 (2014)Google Scholar
  71. 71.
    Pietraszkiewicz, W., Konopińska, V.: Junctions in shell structures: a review. Thin-Walled Struct. 95, 310–334 (2015)CrossRefGoogle Scholar
  72. 72.
    Pietraszkiewicz, W., Eremeyev, V.A., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. J. Appl. Math. Mech. ZAMM 87(2), 150–159 (2007)CrossRefGoogle Scholar
  73. 73.
    Roytburd, A.L., Slutsker, J.: Theory of multilayer SMA actuators. Mater. Trans. 43(5), 1023–1029 (2002)CrossRefGoogle Scholar
  74. 74.
    Straughan, B.: Stability and Wave Motion in Porous Media, vol. 165. Springer, New York (2008)Google Scholar
  75. 75.
    Teng, J.G.: Intersections in steel shell structures. Prog. Struct. Eng. Mater. 2, 459–471 (2000)CrossRefGoogle Scholar
  76. 76.
    Teng, J.G.: Shell junctions. In: Teng, J.G., Rotter, J.M. (Eds.) Buckling of Thin Metal Shells, pp. 369–408. Spon Press, Taylor & Francis (2004)Google Scholar
  77. 77.
    Truesdell, C.: Rational Termodynamics, 2nd edn. Springer, New York (1984)CrossRefGoogle Scholar
  78. 78.
    Truesdell, C., Toupin, R.A.: Encyclopedia of Physics, vol III/1, Springer, Berlin, chap The classical field theories, pp. 226–858 (1961)Google Scholar
  79. 79.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4), 85 (2016)CrossRefGoogle Scholar
  80. 80.
    S̆ilhavý, M.: The Mechanics and Thermodynamics of Continuum Media. Springer, Berlin (1997)Google Scholar
  81. 81.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1999)CrossRefGoogle Scholar
  82. 82.
    Witkowski, W.: 4-node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom. Comput. Mech. 43, 307–319 (2009)CrossRefGoogle Scholar
  83. 83.
    Yoneyama, T., Miyazaki, S. (eds.): Shape Memory Alloys and Biomedical Applications. Woodhead P Ltd, Cambridge (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Violetta Konopińska-Zmysłowska
    • 1
    Email author
  • Victor A. Eremeyev
    • 1
  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland

Personalised recommendations