Advertisement

Titania–Montmorillonite for the Photocatalytic Removal of Contaminants from Water: Adsorb & Shuttle Process

  • Ridha Djellabi
  • Mohamed Fouzi Ghorab
  • Abdelaziz Smara
  • Claudia Letizia Bianchi
  • Giuseppina Cerrato
  • Xu Zhao
  • Bo Yang
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 38)

Abstract

Recently, TiO2–Montmorillonite-based composites have attracted a great deal of attention as efficient photocatalysts for the degradation/reduction of organic contaminants and heavy metals in waters and wastewaters. It can be claimed that the most popular benefits of using TiO2–Montmorillonite photocatalysts are an enhancement in the photocatalytic removal of contaminants due to their high adsorption capacity, high photocatalytic activity of nanoscaled TiO2 deposited on Montmorillonite surface and low costs. Otherwise, the use of naked nanoscaled TiO2 is not recommended because of its low adsorption ability, fast agglomeration in water and due to the issue of recovery of such small particles from water. Differently from naked TiO2, the photocatalytic removal of contaminants by TiO2–Montmorillonite is enhanced through the mechanism so-called Adsorb & Shuttle (A&S) which is based on the use of highly adsorbing domains to increase the quantity of contaminants near TiO2 photocatalytic sites. Adsorb & Shuttle process can be affected by TiO2–Montmorillonite characteristics (i.e. TiO2 loading, surface area, pore size and degree of TiO2 crystallinity) as well as the type of contaminant. In this chapter, the following points will be highlighted: (i) mechanisms of TiO2 photocatalysis for the removal of organic contaminants and heavy metals, (ii) recent progress on synthesis of TiO2–Montmorillonite photocatalysts via different methods and (iii) recent discussions regarding the photocatalytic removal of contaminants by TiO2–Montmorillonite composites.

Keywords

TiO2–Montmorillonite Photocatalysis Adsorb & Shuttle Water remediation Organic contaminants Heavy metals 

References

  1. Anggraini DI, Hp ES, Santosa EOG (2016) Photocatalytic reduction of Cu(II) ion and TiO2-catalyzed paracetamol photodegradation as an alternative method in waste treatment. ALCHEMY Jurnal Penelitian Kimia 11(2):163–174.  https://doi.org/10.20961/alchemy.11.2.726.163-174 CrossRefGoogle Scholar
  2. Belessi V, Lambropoulou D, Konstantinou I, Katsoulidis A, Pomonis P, Petridis D, Albanis T (2007) Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor. Appl Catal B Environ 73(3–4):292–299.  https://doi.org/10.1016/j.apcatb.2006.12.011 CrossRefGoogle Scholar
  3. Belver C, Bedia J, Rodriguez J (2015) Titania–clay heterostructures with solar photocatalytic applications. Appl Catal B Environ 176:278–287.  https://doi.org/10.1016/j.apcatb.2015.04.004 CrossRefGoogle Scholar
  4. Belver C, Bedia J, Álvarez-Montero M, Rodriguez J (2016) Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catal Today 266:36–45.  https://doi.org/10.1016/j.cattod.2015.09.025 CrossRefGoogle Scholar
  5. Belver C, Han C, Rodriguez J, Dionysiou D (2017) Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal Today 280:21–28.  https://doi.org/10.1016/j.cattod.2016.04.029 CrossRefGoogle Scholar
  6. Bhattacharyya A, Kawi S, Ray M (2004) Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal Today 98(3):431–439.  https://doi.org/10.1016/j.cattod.2004.08.010 CrossRefGoogle Scholar
  7. Boukhatem H, Djouadi L, Abdelaziz N, Khalaf H (2013) Synthesis, characterization and photocatalytic activity of CdS–montmorillonite nanocomposites. Appl Clay Sci 72:44–48.  https://doi.org/10.1016/j.clay.2013.01.011 CrossRefGoogle Scholar
  8. Butman MF, Ovchinnikov NL, Karasev NS, Kochkina NE, Agafonov AV, Vinogradov AV (2018) Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes. Beilstein J Nanotechnol 9:364.  https://doi.org/10.3762/bjnano.9.36 CrossRefGoogle Scholar
  9. Byrne JA, Eggins BR (1998) Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J Electroanal Chem 457(1–2):61–72.  https://doi.org/10.1016/S0022-0728(98)00304-0 CrossRefGoogle Scholar
  10. Byrne C, Subramanian G, Pillai SC (2017) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng.  https://doi.org/10.1016/j.jece.2017.07.080 CrossRefGoogle Scholar
  11. Chen K, Li J, Li J, Zhang Y, Wang W (2010) Synthesis and characterization of TiO2–montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulforhodamine B under UV–vis irradiation. Colloids Surf A Physicochem Eng Asp 360(1–3):47–56.  https://doi.org/10.1016/j.colsurfa.2010.02.005 CrossRefGoogle Scholar
  12. Chen K, Li J, Wang W, Zhang Y, Wang X, Su H (2011) The preparation of vanadium-doped TiO2–montmorillonite nanocomposites and the photodegradation of sulforhodamine B under visible light irradiation. Appl Surf Sci 257(16):7276–7285.  https://doi.org/10.1016/j.apsusc.2011.03.104 CrossRefGoogle Scholar
  13. Chen D, Zhu Q, Zhou F, Deng X, Li F (2012) Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. J Hazard Mater 235:186–193.  https://doi.org/10.1016/j.jhazmat.2012.07.038 CrossRefGoogle Scholar
  14. Chen D, Zhu H, Wang X (2014) A facile method to synthesize the photocatalytic TiO2/montmorillonite nanocomposites with enhanced photoactivity. Appl Surf Sci 319:158–166.  https://doi.org/10.1016/j.apsusc.2014.05.085 CrossRefGoogle Scholar
  15. Chen W, Xiao H, Xu H, Ding T, Gu Y (2015) Photodegradation of methylene blue by TiO2-Fe3O4-bentonite magnetic Nanocomposite. Int J Photoenergy 2015:1.  https://doi.org/10.1155/2015/591428 CrossRefGoogle Scholar
  16. Cristante VM, Araujo AB, Jorge S, Florentino AO, Valente JP, Padilha PM (2006) Enhanced photocatalytic reduction of Hg (II) in aqueous medium by 2-aminothiazole-modified TiO2 particles. J Braz Chem Soc 17(3):453–457.  https://doi.org/10.1590/S0103-50532006000300004 CrossRefGoogle Scholar
  17. Damardji B, Khalaf H, Duclaux L, David B (2009a) Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Appl Clay Sci 44(3–4):201–205.  https://doi.org/10.1016/j.clay.2008.12.010 CrossRefGoogle Scholar
  18. Damardji B, Khalaf H, Duclaux L, David B (2009b) Preparation of TiO2-pillared montmorillonite as photocatalyst Part II: photocatalytic degradation of a textile azo dye. Appl Clay Sci 45(1–2):98–104.  https://doi.org/10.1016/j.clay.2009.04.002 CrossRefGoogle Scholar
  19. Djellabi R, Ghorab M (2015a) Photoreduction of toxic chromium using TiO2-immobilized under natural sunlight: effects of some hole scavengers and process parameters. Desalin Water Treat 55(7):1900–1907.  https://doi.org/10.1080/19443994.2014.927335 CrossRefGoogle Scholar
  20. Djellabi R, Ghorab M (2015b) Solar photocatalytic decolourization of crystal violet using supported TiO2: effect of some parameters and comparative efficiency. Desalin Water Treat 53(13):3649–3655.  https://doi.org/10.1080/19443994.2013.873354 CrossRefGoogle Scholar
  21. Djellabi R, Ghorab M, Cerrato G, Morandi S, Gatto S, Oldani V, Di Michele A, Bianchi C (2014) Photoactive TiO2–montmorillonite composite for degradation of organic dyes in water. J Photochem Photobiol A Chem 295:57–63.  https://doi.org/10.1016/j.jphotochem.2014.08.017 CrossRefGoogle Scholar
  22. Djellabi R, Fouzi Ghorab M, Bianchi C, Cerrato G, Morandi S (2016a) Removal of crystal violet and hexavalent chromium using TiO2-bentonite under sunlight: effect of TiO2 content. J Chem Eng Process Technol 7(01):1–8.  https://doi.org/10.4172/2157-7048.1000276 CrossRefGoogle Scholar
  23. Djellabi R, Ghorab FM, Nouacer S, Smara A, Khireddine O (2016b) Cr (VI) photocatalytic reduction under sunlight followed by Cr (III) extraction from TiO2 surface. Mater Lett 176:106–109.  https://doi.org/10.1016/j.matlet.2016.04.090 CrossRefGoogle Scholar
  24. Djellabi R, Ghorab MF, Bianchi CL, Cerrato G, Morandi S (2016c) Recovery of hexavalent chromium from water using photoactive TiO2-montmorillonite under sunlight. Mediterranean J Chem 5(3):442–449.  https://doi.org/10.13171/mjc53/016041311/djellabi CrossRefGoogle Scholar
  25. Djellabi R, Ghorab MF, Sehili T (2017) Simultaneous removal of methylene blue and hexavalent chromium from water using TiO2/Fe (III)/H2O2/sunlight. CLEAN–Soil Air Water 45(6).  https://doi.org/10.1002/clen.201500379 CrossRefGoogle Scholar
  26. Dou B, Chen H, Song Y, Tan C (2011a) Synthesis and characterization of heterostructured nanohybrid of MgO–TiO2–Al2O3/montmorillonite. Mater Chem Phys 130(1–2):63–66.  https://doi.org/10.1016/j.matchemphys.2011.05.035 CrossRefGoogle Scholar
  27. Dou B, Dupont V, Pan W, Chen B (2011b) Removal of aqueous toxic Hg (II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. Chem Eng J 166(2):631–638.  https://doi.org/10.1016/j.cej.2010.11.035 CrossRefGoogle Scholar
  28. Du Y, Zheng P (2014) Adsorption and photodegradation of methylene blue on TiO 2-halloysite adsorbents. Korean J Chem Eng 31(11):2051–2056.  https://doi.org/10.1007/s11814-014-0162-8 CrossRefGoogle Scholar
  29. Dvininov E, Popovici E, Pode R, Cocheci L, Barvinschi P, Nica V (2009) Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation. J Hazard Mater 167(1–3):1050–1056.  https://doi.org/10.1016/j.jhazmat.2009.01.105 CrossRefGoogle Scholar
  30. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14.  https://doi.org/10.1016/j.mssp.2015.07.052 CrossRefGoogle Scholar
  31. Fatimah I (2012) Composite of TiO2-montmorillonite from Indonesia and its photocatalytic properties in methylene blue and E. Coli reduction. J Mater Environ Sci 3(5):983–992Google Scholar
  32. Fatimah I, Sumarlan I, Alawiyah T (2015) Fe (III)/TiO2-montmorillonite photocatalyst in photo-Fenton-like degradation of methylene blue. Int J Chem Eng 2015:1.  https://doi.org/10.1155/2015/485463 CrossRefGoogle Scholar
  33. Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Prentice Hall, Upper Saddle River, pp 869–878Google Scholar
  34. Fontana KB, Lenzi GG, Seára EC, Chaves ES (2018) Comparison of photocatalysis and photolysis processes for arsenic oxidation in water. Ecotoxicol Environ Saf 151:127–131.  https://doi.org/10.1016/j.ecoenv.2018.01.001 CrossRefGoogle Scholar
  35. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1(1):1–21.  https://doi.org/10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  36. Gebru KA, Das C (2017) Removal of Pb (II) and Cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. J Water Process Eng 16:1–13.  https://doi.org/10.1016/j.jwpe.2016.11.008 CrossRefGoogle Scholar
  37. Guo Y, Guo Y, Wang X, Li P, Kong L, Wang G, Li X, Liu Y (2017) Enhanced photocatalytic reduction activity of uranium (vi) from aqueous solution using the Fe 2 O 3–graphene oxide nanocomposite. Dalton Trans 46(43):14762–14770.  https://doi.org/10.1039/C7DT02639K CrossRefGoogle Scholar
  38. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269.  https://doi.org/10.1143/JJAP.44.8269 CrossRefGoogle Scholar
  39. Hassani A, Khataee A, Karaca S, Fathinia M (2017a) Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: simultaneous determination and intermediates identification. J Environ Chem Eng 5(2):1964–1976.  https://doi.org/10.1016/j.jece.2017.03.032 CrossRefGoogle Scholar
  40. Hassani A, Khataee A, Karaca S, Karaca C, Gholami P (2017b) Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason Sonochem 35:251–262.  https://doi.org/10.1016/j.ultsonch.2016.09.027 CrossRefGoogle Scholar
  41. Henych J, Kormunda M, Šťastný M, Janoš P, Vomáčka P, Matoušek J, Štengl V (2017) Water-based synthesis of TiO2/CeO2 composites supported on plasma-treated montmorillonite for parathion methyl degradation. Appl Clay Sci 144:26–35.  https://doi.org/10.1016/j.clay.2017.05.001 CrossRefGoogle Scholar
  42. Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129.  https://doi.org/10.1016/S0920-5861(99)00107-8 CrossRefGoogle Scholar
  43. Hsing J, Kameshima Y, Nishimoto S, Miyake M (2018) Preparation of carbon-modified N–TiO2/montmorillonite composite with high photocatalytic activity under visible light radiation. J Ceram Soc Jpn 126(4):230–235.  https://doi.org/10.2109/jcersj2.17235 CrossRefGoogle Scholar
  44. Huo M, Guo H, Jiang Y, Ju H, Xue B, Li F (2018) A facile method of preparing sandwich layered TiO2 in between montmorillonite sheets and its enhanced UV-light photocatalytic activity. J Photochem Photobiol A Chem 358:121–129.  https://doi.org/10.1016/j.jphotochem.2018.02.012 CrossRefGoogle Scholar
  45. Kabra K, Chaudhary R, Sawhney R (2008) Solar photocatalytic removal of cu (II), Ni (II), Zn (II) and Pb (II): speciation modeling of metal–citric acid complexes. J Hazard Mater 155(3):424–432.  https://doi.org/10.1016/j.jhazmat.2007.11.083 CrossRefGoogle Scholar
  46. Kajitvichyanukul P, Chenthamarakshan C, Rajeshwar K, Qasim S (2002) Photocatalytic reactivity of thallium (I) species in aqueous suspensions of titania. J Electroanal Chem 519(1–2):25–32.  https://doi.org/10.1016/S0022-0728(01)00709-4 CrossRefGoogle Scholar
  47. Kameshima Y, Tamura Y, Nakajima A, Okada K (2009a) Preparation and properties of TiO2/montmorillonite composites. Appl Clay Sci 45(1–2):20–23.  https://doi.org/10.1016/j.clay.2009.03.005 CrossRefGoogle Scholar
  48. Kameshima Y, Yoshizawa A, Nakajima A, Okada K (2009b) Solid acidities of SiO2–TiO2/montmorillonite composites synthesized under different pH conditions. Appl Clay Sci 46(2):181–184.  https://doi.org/10.1016/j.clay.2009.08.001 CrossRefGoogle Scholar
  49. Khalfaoui-Boutoumi N, Boutoumi H, Khalaf H, David B (2013) Synthesis and characterization of TiO2–Montmorillonite/Polythiophene-SDS nanocomposites: application in the sonophotocatalytic degradation of rhodamine 6G. Appl Clay Sci 80:56–62.  https://doi.org/10.1016/j.clay.2013.06.005 CrossRefGoogle Scholar
  50. Krishnan B, Mahalingam S (2017) Ag/TiO2/bentonite nanocomposite for biological applications: synthesis, characterization, antibacterial and cytotoxic investigations. Adv Powder Technol 28(9):2265–2280.  https://doi.org/10.1016/j.apt.2017.06.007 CrossRefGoogle Scholar
  51. Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19(6):1761–1769.  https://doi.org/10.1016/j.jiec.2013.07.012 CrossRefGoogle Scholar
  52. Lee WH, Teh SJ, Chou PM, Lai CW (2017) Photocatalytic reduction of aqueous mercury (II) using hybrid WO3-TiO2 nanotubes film. Curr Nanosci 13(6):616–624.  https://doi.org/10.2174/1573413713666170616084447 CrossRefGoogle Scholar
  53. Lenzi G, Fávero C, Colpini L, Bernabe H, Baesso M, Specchia S, Santos O (2011) Photocatalytic reduction of Hg (II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination 270(1–3):241–247.  https://doi.org/10.1016/j.desal.2010.11.051 CrossRefGoogle Scholar
  54. Li Y, Liu JR, Jia SY, Guo JW, Zhuo J, Na P (2012) TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem Eng J 191:66–74.  https://doi.org/10.1016/j.cej.2012.02.058 CrossRefGoogle Scholar
  55. Liang X, Qi F, Liu P, Wei G, Su X, Ma L, He H, Lin X, Xi Y, Zhu J (2016) Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: the effect of Fe on catalytic activity. Appl Clay Sci 132:96–104.  https://doi.org/10.1016/j.clay.2016.05.022 CrossRefGoogle Scholar
  56. Liang H, Wang Z, Liao L, Chen L, Li Z, Feng J (2017) High performance photocatalysts: Montmorillonite supported-nano TiO2 composites. Optik Int J Light Electron Opt 136:44–51.  https://doi.org/10.1016/j.ijleo.2017.02.018 CrossRefGoogle Scholar
  57. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ 23(2–3):89–114.  https://doi.org/10.1016/S0926-3373(99)00069-7 CrossRefGoogle Scholar
  58. Litter MI (2009) Treatment of chromium, mercury, lead, uranium, and arsenic in water by heterogeneous photocatalysis. Adv Chem Eng 36:37–67.  https://doi.org/10.1016/S0065-2377(09)00402-5 CrossRefGoogle Scholar
  59. Litter MI (2015) Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl Chem 87(6):557–567.  https://doi.org/10.1515/pac-2014-0710 CrossRefGoogle Scholar
  60. Litter MI (2017) Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic. Curr Opin Green Sustain Chem 6:150–158.  https://doi.org/10.1016/j.cogsc.2017.04.002 CrossRefGoogle Scholar
  61. Liu J, Dong M, Zuo S, Yu Y (2009) Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Appl Clay Sci 43(2):156–159.  https://doi.org/10.1016/j.clay.2008.07.016 CrossRefGoogle Scholar
  62. López-Muñoz M-J, Aguado J, van Grieken R, Marugán J (2009) Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions. Appl Catal B Environ 86(1–2):53–62.  https://doi.org/10.1016/j.apcatb.2008.07.022 CrossRefGoogle Scholar
  63. López-Muñoz M-J, Arencibia A, Cerro L, Pascual R, Melgar Á (2016) Adsorption of hg (II) from aqueous solutions using TiO2 and titanate nanotube adsorbents. Appl Surf Sci 367:91–100.  https://doi.org/10.1016/j.apsusc.2016.01.109 CrossRefGoogle Scholar
  64. Lu M (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim. ISBN:978-3-527-33187-1Google Scholar
  65. Mahalakshmi M, Priya SV, Arabindoo B, Palanichamy M, Murugesan V (2009) Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2. J Hazard Mater 161(1):336–343.  https://doi.org/10.1016/j.jhazmat.2008.03.098 CrossRefGoogle Scholar
  66. Mahlamvana F, Kriek R (2014) Photocatalytic reduction of platinum (II and IV) from their chloro complexes in a titanium dioxide suspension in the absence of an organic sacrificial reducing agent. Appl Catal B Environ 148:387–393.  https://doi.org/10.1016/j.apcatb.2013.11.011 CrossRefGoogle Scholar
  67. Mahlamvana F, Kriek R (2015) Photocatalytic reduction of [RhCln (H2O) 6− n] 3− n (n= 0–6) in a titanium dioxide suspension: the role of structurally different sacrificial reducing agents. Appl Catal B Environ 162:445–453.  https://doi.org/10.1016/j.apcatb.2014.06.042 CrossRefGoogle Scholar
  68. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59.  https://doi.org/10.1016/j.cattod.2009.06.018 CrossRefGoogle Scholar
  69. Manova E, Aranda P, Martín-Luengo MA, Letaïef S, Ruiz-Hitzky E (2010) New titania-clay nanostructured porous materials. Microporous Mesoporous Mater 131(1–3):252–260.  https://doi.org/10.1016/j.micromeso.2009.12.031 CrossRefGoogle Scholar
  70. Marinho BA, Djellabi R, Cristóvão RO, Loureiro JM, Boaventura RA, Dias MM, Lopes JCB, Vilar VJ (2017) Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr (VI) reduction under simulated solar light. Chem Eng J 318:76–88.  https://doi.org/10.1016/j.cej.2016.05.077 CrossRefGoogle Scholar
  71. Marinho BA, Cristóvão RO, Djellabi R, Caseiro A, Miranda SM, Loureiro JM, Boaventura RA, Dias MM, Lopes JCB, Vilar VJ (2018) Strategies to reduce mass and photons transfer limitations in heterogeneous photocatalytic processes: hexavalent chromium reduction studies. J Environ Manag 217:555–564.  https://doi.org/10.1016/j.jenvman.2018.04.003 CrossRefGoogle Scholar
  72. Ménesi J, Körösi L, Bazsó É, Zöllmer V, Richardt A, Dékány I (2008) Photocatalytic oxidation of organic pollutants on titania–clay composites. Chemosphere 70(3):538–542.  https://doi.org/10.1016/j.chemosphere.2007.06.049 CrossRefGoogle Scholar
  73. Miao S, Liu Z, Han B, Zhang J, Yu X, Du J, Sun Z (2006) Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue. J Mater Chem 16(6):579–584.  https://doi.org/10.1039/B511426H CrossRefGoogle Scholar
  74. MiarAlipour S, Friedmann D, Scott J, Amal R (2018) TiO2/porous adsorbents: recent advances and novel applications. J Hazard Mater 341:404–423.  https://doi.org/10.1016/j.jhazmat.2017.07.070 CrossRefGoogle Scholar
  75. Mishra A, Mehta A, Sharma M, Basu S (2017a) Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/clay nanocomposites: a comparison study of different type of clays. J Alloys Compd 694:574–580.  https://doi.org/10.1016/j.jallcom.2016.10.036 CrossRefGoogle Scholar
  76. Mishra A, Mehta A, Sharma M, Basu S (2017b) Impact of ag nanoparticles on photomineralization of chlorobenzene by TiO2/bentonite nanocomposite. J Environ Chem Eng 5(1):644–651.  https://doi.org/10.1016/j.jece.2016.12.042 CrossRefGoogle Scholar
  77. Mishra A, Mehta A, Kainth S, Basu S (2018) Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light. Appl Clay Sci 153:144–153.  https://doi.org/10.1016/j.clay.2017.11.040 CrossRefGoogle Scholar
  78. Mohamed R, Salam MA (2014) Photocatalytic reduction of aqueous mercury (II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite. Mater Res Bull 50:85–90.  https://doi.org/10.1016/j.materresbull.2013.10.031 CrossRefGoogle Scholar
  79. Murruni L, Conde F, Leyva G, Litter MI (2008) Photocatalytic reduction of Pb (II) over TiO2: new insights on the effect of different electron donors. Appl Catal B Environ 84(3–4):563–569.  https://doi.org/10.1016/j.apcatb.2008.05.012 CrossRefGoogle Scholar
  80. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13(3):169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  81. Ooka C, Akita S, Ohashi Y, Horiuchi T, Suzuki K, Komai S-i, Yoshida H, Hattori T (1999) Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity. J Mater Chem 9(11):2943–2952.  https://doi.org/10.1039/A901421G CrossRefGoogle Scholar
  82. Ooka C, Yoshida H, Horio M, Suzuki K, Hattori T (2003) Adsorptive and photocatalytic performance of TiO2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity. Appl Catal B Environ 41(3):313–321.  https://doi.org/10.1016/S0926-3373(02)00169-8 CrossRefGoogle Scholar
  83. Özcan AS, Erdem B, Özcan A (2005) Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite. Colloids Surf A Physicochem Eng Asp 266(1–3):73–81.  https://doi.org/10.1016/j.colsurfa.2005.06.001 CrossRefGoogle Scholar
  84. Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri M, Agostiano A, Comparelli R (2017) Nanocomposite materials for photocatalytic degradation of pollutants. Catal Today 281:85–100.  https://doi.org/10.1016/j.cattod.2016.05.048 CrossRefGoogle Scholar
  85. Rastgar M, Zolfaghari A, Mortaheb H, Sayahi H, Naderi H (2013) Photocatalytic/adsorptive removal of methylene blue dye by electrophoretic nanostructured TiO2/montmorillonite composite films. J Adv Oxid Technol 16(2):292–297.  https://doi.org/10.1515/jaots-2013-0211 CrossRefGoogle Scholar
  86. Rauf M, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1–3):10–18.  https://doi.org/10.1016/j.cej.2009.02.026 CrossRefGoogle Scholar
  87. Rodríguez JL, Pola F, Valenzuela MA, Poznyak T (2010) Photocatalytic deposition of nickel nanoparticles on titanium dioxide. MRS Online Proceedings Library Archive 1279.  https://doi.org/10.1557/PROC-1279-53
  88. Romero A, Dodorado F, Asencio I, García PB, Valverde JL (2006) Ti-pillared clays: synthesis and general characterization. Clay Clay Miner 54(6):737–747.  https://doi.org/10.1346/CCMN.2006.0540608 CrossRefGoogle Scholar
  89. Rossetto E, Petkowicz DI, dos Santos JH, Pergher SB, Penha FG (2010) Bentonites impregnated with TiO2 for photodegradation of methylene blue. Appl Clay Sci 48(4):602–606.  https://doi.org/10.1346/CCMN.2006.0540608 CrossRefGoogle Scholar
  90. Rutherford DW, Chiou CT, Eberl DD (1997) Effects of exchanged cation on the microporosity of montmorillonite. Clay Clay Miner 45(4):534–543.  https://doi.org/10.1346/CCMN.1997.0450405 CrossRefGoogle Scholar
  91. Ruvarac-Bugarčić IA, Šaponjić ZV, Zec S, Rajh T, Nedeljković JM (2005) Photocatalytic reduction of cadmium on TiO2 nanoparticles modified with amino acids. Chem Phys Lett 407(1–3):110–113.  https://doi.org/10.1016/j.cplett.2005.03.058 CrossRefGoogle Scholar
  92. Sahel K, Bouhent M, Belkhadem F, Ferchichi M, Dappozze F, Guillard C, Figueras F (2014) Photocatalytic degradation of anionic and cationic dyes over TiO2 P25, and Ti-pillared clays and ag-doped Ti-pillared clays. Appl Clay Sci 95:205–210.  https://doi.org/10.1016/j.clay.2014.04.014 CrossRefGoogle Scholar
  93. Saien J, Ghamari F, Azizi A (2016) The role of counter-anions in photocatalytic reduction of Ni (II) with a trace amount of titania nanoparticles. J Iran Chem Soc 13(12):2247–2255.  https://doi.org/10.1007/s1373 CrossRefGoogle Scholar
  94. Shenvi SS, Isloor AM, Ismail A (2015) A review on RO membrane technology: developments and challenges. Desalination 368:10–26.  https://doi.org/10.1016/j.desal.2014.12.042 CrossRefGoogle Scholar
  95. Singh C, Chaudhary R (2013) Visible light induced photocatalytic reduction of metals (Cr, cu, Ni, and Zn) and its synergism with different pH, TiO2, and H2O2 doses in simulated wastewater. J Renew Sustain Energ 5(5):053102.  https://doi.org/10.1063/1.4818899 CrossRefGoogle Scholar
  96. Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath K, Sankaranarayanan A (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78.  https://doi.org/10.1016/j.jenvman.2017.05.063 CrossRefGoogle Scholar
  97. Sun H, Peng T, Liu B, Xian H (2015) Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Appl Clay Sci 114:440–446.  https://doi.org/10.1016/j.clay.2015.06.026 CrossRefGoogle Scholar
  98. Tahir M, Amin NS (2013) Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites. Appl Catal B Environ 142:512–522.  https://doi.org/10.1016/j.apcatb.2013.05.054 CrossRefGoogle Scholar
  99. Tan T, Beydoun D, Amal R (2003) Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A Chem 159(3):273–280.  https://doi.org/10.1016/S1010-6030(03)00171-0 CrossRefGoogle Scholar
  100. Testa JJ, Grela MA, Litter MI (2001) Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium (VI) over TiO2. Langmuir 17(12):3515–3517.  https://doi.org/10.1021/la010100y CrossRefGoogle Scholar
  101. Testa JJ, Grela MA, Litter MI (2004) Heterogeneous photocatalytic reduction of chromium (VI) over TiO2 particles in the presence of oxalate: involvement of Cr (V) species. Environ Sci Technol 38(5):1589–1594.  https://doi.org/10.1016/j.apcatb.2006.09.002 CrossRefGoogle Scholar
  102. Vicente, M., A. Gil and F. Bergaya (2013). Pillared clays and clay minerals. Dev Clay Sci, Elsevier. 5: 523–557 https://doi.org/10.1016/B978-0-08-098258-8.00017-1 Google Scholar
  103. Volzone C, Rinaldi J, Ortiga J (2002) N2 and CO2 adsorption by TMA-and HDP-Montmorillonites. Mater Res 5(4):475–479.  https://doi.org/10.1590/S1516-14392002000400013 CrossRefGoogle Scholar
  104. Wang B, Zhang G, Sun Z, Zheng S (2014) Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation. Powder Technol 262:1–8.  https://doi.org/10.1016/j.powtec.2014.04.050 CrossRefGoogle Scholar
  105. Wang Z, Xu Q, Meng T, Ren T, Chen D (2015) Preparation and characterization of CdS/TiO2–Mt composites with enhanced visible light Photocatalytic activity. Energy Environ Focus 4(2):149–156.  https://doi.org/10.1166/eef.2015.1150 CrossRefGoogle Scholar
  106. Wang Z, Liang H, Liao L, Chen L, Li Z, Feng J (2018) Zeolite supported-Nano TiO2 composites prepared by a facile solid diffusion process as high performance Photocatalysts. J Nanosci Nanotechnol 18(8):5726–5730.  https://doi.org/10.1166/jnn.2018.15403 CrossRefGoogle Scholar
  107. Waqas M, Wei Y, Mao D, Qi J, Yang Y, Wang B, Wang D (2017) Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation. Nano Res 10(11):3920–3928.  https://doi.org/10.1007/s12274-017-1606-3 CrossRefGoogle Scholar
  108. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491.  https://doi.org/10.1021/nn800251f CrossRefGoogle Scholar
  109. Yahiro H, Miyamoto T, Watanabe N, Yamaura H (2007) Photocatalytic partial oxidation of α-methylstyrene over TiO2 supported on zeolites. Catal Today 120(2):158–162.  https://doi.org/10.1016/j.cattod.2006.07.039 CrossRefGoogle Scholar
  110. Yang C-S, Wang Y-J, Shih M-S, Chang Y-T, Hon C-C (2009) Photocatalytic performance of alumina-incorporated titania composite nanoparticles: surface area and crystallinity. Appl Catal A Gen 364(1–2):182–190.  https://doi.org/10.1016/j.apcata.2009.05.052 CrossRefGoogle Scholar
  111. Yang S, Liang G, Gu A, Mao H (2013) Synthesis of TiO2 pillared montmorillonite with ordered interlayer mesoporous structure and high photocatalytic activity by an intra-gallery templating method. Mater Res Bull 48(10):3948–3954.  https://doi.org/10.1016/j.materresbull.2013.06.019 CrossRefGoogle Scholar
  112. Yang C, Zhu Y, Wang J, Li Z, Su X, Niu C (2015) Hydrothermal synthesis of TiO2–WO3–bentonite composites: conventional versus ultrasonic pretreatments and their adsorption of methylene blue. Appl Clay Sci 105:243–251.  https://doi.org/10.1016/j.clay.2015.01.002 CrossRefGoogle Scholar
  113. Yariv S (2002) Introduction to organo-clay complexes and interactions. Marcel Dekker, New YorkGoogle Scholar
  114. Yu Y, Wang J, Parr JF (2012) Preparation and properties of TiO2/fumed silica composite photocatalytic materials. Procedia Eng 27:448–456.  https://doi.org/10.1016/j.proeng.2011.12.473 CrossRefGoogle Scholar
  115. Yuan L, Huang D, Guo W, Yang Q, Yu J (2011) TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl Clay Sci 53(2):272–278.  https://doi.org/10.4172/2161-0444.1000347 CrossRefGoogle Scholar
  116. Zhang W, Zou L, Wang L (2009) Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: a review. Appl Catal A Gen 371(1–2):1–9.  https://doi.org/10.1016/j.apcata.2009.09.038 CrossRefGoogle Scholar
  117. Zhang T, Luo Y, Jia B, Li Y, Yuan L, Yu J (2015) Immobilization of self-assembled pre-dispersed nano-TiO2 onto montmorillonite and its photocatalytic activity. J Environ Sci 32:108–117.  https://doi.org/10.1016/j.jes.2015.01.010. Epub 2015 Apr 24CrossRefGoogle Scholar
  118. Zhang Y, Sivakumar M, Yang S, Enever K, Ramezanianpour M (2018) Application of solar energy in water treatment processes: a review. Desalination 428:116–145.  https://doi.org/10.1016/j.desal.2017.11.020 CrossRefGoogle Scholar
  119. ZHENG Y, Zhiming P, Xinchen W (2013) Advances in photocatalysis in China. Chin J Catal 34(3):524–535.  https://doi.org/10.1016/S1872-2067(12)60548-8 CrossRefGoogle Scholar
  120. Zhou F-s, Chen D-m, Cui B-l, Wang W-h (2014) Synthesis and characterization of CdS/TiO2-Montmorillonite Nanocomposite with enhanced visible-light absorption. J Spectrosc 2014:1.  https://doi.org/10.1155/2014/961230 CrossRefGoogle Scholar
  121. Zou L, Luo Y, Hooper M, Hu E (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst. Chem Eng Process Process Intensif 45(11):959–964.  https://doi.org/10.1016/j.cep.2006.01.014 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ridha Djellabi
    • 1
    • 2
    • 3
  • Mohamed Fouzi Ghorab
    • 3
  • Abdelaziz Smara
    • 3
  • Claudia Letizia Bianchi
    • 4
  • Giuseppina Cerrato
    • 5
  • Xu Zhao
    • 1
  • Bo Yang
    • 2
  1. 1.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Department of Environmental Engineering, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of SciencesBadji-Mokhtar UniversityAnnabaAlgeria
  4. 4.Università degli Studi di Milano, Dip. Chimica and INSTM-UdR MilanoMilanItaly
  5. 5.Università degli Studi di Torino, Dipartimento di Chimica and NIS Interdepartmental Centre and Consorzio INSTM-UdRTorinoItaly

Personalised recommendations