Advertisement

CEA: A Service for Cognitive Event Automation

  • Larisa Shwartz
  • Jinho HwangEmail author
  • Hagen Völzer
  • Michael Nidd
  • Murilo Goncalves Aguiar
  • Marcos Vinicius Landivar Paraiso
  • Letusa Valero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11434)

Abstract

The IT service management is transforming or evolving with artificial intelligence. A data-driven and knowledge-based approach potentiates the IT service management optimization and automation with the goal of delivering better business outcomes. In this demo, we show our framework, cognitive event automation (CEA), that applies artificial intelligence to the automated resolution of incident tickets, and the methodology and technologies for creating knowledge by analyzing tickets, eliminating those that do not require action as well as auto-resolving those that do. The case study shows CEA can help the IT service management system to deliver better business outcomes.

Keywords

Cognitive systems Data analytics Event management 

References

  1. 1.
    Botezatu, M.M., Bogojeska, J., Giurgiu, I., Voelzer, H., Wiesmann, D.: Multi-view incident ticket clustering for optimal ticket dispatching. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1711–1720. ACM (2015)Google Scholar
  2. 2.
    Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices: how to make your application scale. CoRR abs/1702.07149 (2017). http://arxiv.org/abs/1702.07149
  3. 3.
    Francesco, P.D., Malavolta, I., Lago, P.: Research on architecting microservices: trends, focus, and potential for industrial adoption. In: 2017 IEEE International Conference on Software Architecture (ICSA), pp. 21–30, April 2017Google Scholar
  4. 4.
    Perng, C., Thoenen, D., Grabarnik, G., Ma, S., Hellerstein, J.: Data-driven validation, completion and construction of event relationship networks. In: Proceedings of the ninth ACM SIGKDD, pp. 729–734. ACM (2003)Google Scholar
  5. 5.
    Sill, A.: The design and architecture of microservices. IEEE Cloud Comput. 3(5), 76–80 (2016)CrossRefGoogle Scholar
  6. 6.
    Sohrabi, S., Riabov, A.V., Udrea, O., Hassanzadeh, O.: Finding diverse high-quality plans for hypothesis generation. In: ECAI Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1581–1582. IOS Press, The Netherlands (2016)Google Scholar
  7. 7.
    Wang, Q., Zhou, W., Zeng, C., Li, T., Shwartz, L., Grabarnik, G.Y.: Constructing the knowledge base for cognitive it service management. In: 2017 IEEE International Conference on Services Computing (SCC). IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Larisa Shwartz
    • 1
  • Jinho Hwang
    • 1
    Email author
  • Hagen Völzer
    • 2
  • Michael Nidd
    • 2
  • Murilo Goncalves Aguiar
    • 3
  • Marcos Vinicius Landivar Paraiso
    • 3
  • Letusa Valero
    • 3
  1. 1.IBM T.J. Watson Research CenterNew YorkUSA
  2. 2.IBM Zurich Research LabZurichSwitzerland
  3. 3.IBM Global Technology ServicesSão PauloBrazil

Personalised recommendations