Improved Architectures/Deployments with Elmo

  • Arjan Lamers
  • Marko van Eekelen
  • Sung-Shik JongmansEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11434)


Manually reasoning about candidate refactorings to alleviate bottlenecks in service-oriented systems is hard, even when using high-level architecture/deployment models. Nevertheless, it is common practice in industry. Elmo is a decision support tool that helps service-oriented architects and deployment engineers to analyze and refactor architectural and deployment bottlenecks in service-oriented systems.


Services Refactoring Architecture Deployment 


  1. 1.
    AppDynamics LLC: AppDynamics.
  2. 2.
    Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)CrossRefGoogle Scholar
  3. 3.
    Bischofberger, W., Kühl, J., Löffler, S.: Sotograph – a pragmatic approach to source code architecture conformance checking. In: Oquendo, F., Warboys, B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 1–9. Springer, Heidelberg (2004). Scholar
  4. 4.
    Brebner, P.: Real-world performance modelling of enterprise service oriented architectures: delivering business value with complexity and constraints (abstracts only). SIGMETRICS Perform. Eval. Rev. 39(3), 12 (2011)CrossRefGoogle Scholar
  5. 5.
    Caracciolo, A., Lungu, M.F., Nierstrasz, O.: A unified approach to architecture conformance checking. In: WICSA, pp. 41–50. IEEE Computer Society (2015)Google Scholar
  6. 6.
    Datadog: Datadog.
  7. 7.
    DynaTrace LLC: DynaTrace.
  8. 8.
    van Eekelen, M., Jongmans, S.S., Lamers, A.: Non-quantitative modeling of service-oriented architectures, refactorings, and performance. Tech. Rep. TR-OU-INF-2017-02, Open University of The Netherlands (2017)Google Scholar
  9. 9.
    Elmo Team: Elmo video.
  10. 10.
    Elmo Team: Elmo website.
  11. 11.
    Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I., Iovino, L., Salle, A.D.: Microart: a software architecture recovery tool for maintaining microservice-based systems. In: ICSA Workshops, pp. 298–302. IEEE (2017)Google Scholar
  12. 12.
    Juan Ferrer, A., et al.: OPTIMIS: a holistic approach to cloud service provisioning. Future Gener. Comp. Syst. 28(1), 66–77 (2012)CrossRefGoogle Scholar
  13. 13.
    Kobryn, C.: Modeling components and frameworks with UML. Commun. ACM 43(10), 31–38 (2000)CrossRefGoogle Scholar
  14. 14.
    Kounev, S.: Performance modeling and evaluation of distributed component-based systems using queueing petri nets. IEEE Trans. Softw. Eng. 32(7), 486–502 (2006)CrossRefGoogle Scholar
  15. 15.
    Lamers, A., van Eekelen, M.: A lightweight method for analysing performance dependencies between services. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567, pp. 93–110. Springer, Cham (2016). Scholar
  16. 16.
    Lattix LDM2: Lattix Architect 10.
  17. 17.
    New Relic: New Relic Inc.
  18. 18.
    Object Management Group: Unified Modeling Language 2.5.1 (2017).
  19. 19.
    SonarSource: SonarQube.
  20. 20.
    Structure101: Structure101 Studio.
  21. 21.
    Zhu, L., Liu, Y., Bui, N.B., Gorton, I.: Revel8or: model driven capacity planning tool suite. In: ICSE, pp. 797–800. IEEE Computer Society (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arjan Lamers
    • 1
    • 2
  • Marko van Eekelen
    • 2
    • 3
  • Sung-Shik Jongmans
    • 2
    • 4
    Email author
  1. 1.First8 B.V.NijmegenThe Netherlands
  2. 2.Department of Computer ScienceOpen University of the NetherlandsHeerlenThe Netherlands
  3. 3.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  4. 4.Department of ComputingImperial College LondonLondonUK

Personalised recommendations