A Cost-Effective Time-Constrained Multi-workflow Scheduling Strategy in Fog Computing

  • Ruimiao Ding
  • Xuejun LiEmail author
  • Xiao Liu
  • Jia Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11434)


With the rapid development of Internet of Things and smart services, massive intelligent devices are accessing the cloud data centers, which can cause serious network congestion and high latency issues. Recently, fog computing becomes a popular computing paradigm which can provide computing resources close to the end devices and solve various problems of existing cloud-only based systems. However, due to QoS (Quality of Service) constraints such as time and cost, and also the complexity of various resource types such as end devices, fog nodes and cloud servers, task scheduling in fog computing is still an open issue. To address such a problem, this paper presents a cost-effective scheduling strategy for multi-workflow with time constraints. Firstly, we define the models for workflow execution time and resource cost in fog computing. Afterwards, a novel PSO (Particle Swarm Optimization) based multi-workflow scheduling strategy is proposed where a fitness function is used to evaluate the workflow execution cost under given deadlines. A heart rate monitoring App is employed as a motivating example and comprehensive experimental results show that our proposed strategy can significantly reduce the execution cost of multiple workflows under given deadlines compared with other strategies.


Fog computing Cost-Effectiveness Particle Swarm Optimization Workflow scheduling Time constraint 



This work was supported by the National Natural Science Foundation of China under No. 61672034, 61300042, and the Natural Science Foundation of Anhui Province of China under No. 1708085MF160, and the Key Natural Science Foundation of Education Bureau of Anhui Province Project No. KJ2018A0010.


  1. 1.
    Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021 white paper. Accessed 6 Jun 2018
  2. 2.
    Cisco global cloud index: Forecast and methodology, 2016–2021 white paper. Accessed 6 Jun 2018
  3. 3.
    Li, C., Xue, Y., Wang, J., et al.: Edge-oriented computing paradigms: A survey on architecture design and system management. ACM Comput. Surv. 51(2), 1–34 (2018)CrossRefGoogle Scholar
  4. 4.
    Deng, R., Lu, R., Lai, C., et al.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2017)Google Scholar
  5. 5.
    Bonomi, F., Milito, R., Zhu, J., et al.: Fog computing and its role in the Internet of Things. In: 1st MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM, Helsinki (2012)Google Scholar
  6. 6.
    Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Di Martino, B., Li, K.-C., Yang, Laurence T., Esposito, A. (eds.) Internet of Everything. IT, pp. 103–130. Springer, Singapore (2018). Scholar
  7. 7.
    Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: a survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78(2), 680–698 (2018)CrossRefGoogle Scholar
  8. 8.
    Ni, L., Zhang, J., Jiang, C., et al.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4(5), 1216–1228 (2017)CrossRefGoogle Scholar
  9. 9.
    Alonso-Monsalve, S., García-Carballeira, F., Calderón, A.: Fog computing through public-resource computing and storage. In: 2nd International Conference on Fog and Mobile Edge Computing, pp. 81–87. IEEE, Valencia (2017)Google Scholar
  10. 10.
    Bao, W., Yuan, D., Yang, Z., et al.: Follow me fog: toward seamless handover timing schemes in a fog computing environment. IEEE Commun. Mag. 55(11), 72–78 (2017)CrossRefGoogle Scholar
  11. 11.
    Yin, H., Zhang, X., Liu, H., et al.: Edge provisioning with flexible server placement. IEEE Trans. Parallel Distrib. Syst. 28(4), 1031–1045 (2017)CrossRefGoogle Scholar
  12. 12.
    Masdari, M., Valikardan, S., Shahi, Z., et al.: Towards workflow scheduling in cloud computing: a comprehensive analysis. J. Netw. Comput. Appl. 66(5), 64–82 (2016)CrossRefGoogle Scholar
  13. 13.
    Bittencourt, L.F., Diazmontes, J., Buyya, R., et al.: Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4(2), 26–35 (2017)CrossRefGoogle Scholar
  14. 14.
    Hu, P., Ning, H., Qiu, T., et al.: Fog computing based face identification and resolution scheme in Internet of Things. IEEE Trans. Ind. Inf. 13(4), 1910–1920 (2017)CrossRefGoogle Scholar
  15. 15.
    Zeng, D., Gu, L., Guo, S., et al.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65(12), 3702–3712 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    You, C., Huang, K., Chae, H., et al.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2016)CrossRefGoogle Scholar
  17. 17.
    Xu, J., Palanisamy, B., Ludwig, H., et al.: Zenith: Utility-aware resource allocation for edge computing. In: IEEE International Conference on Edge Computing, pp. 47–54 (2017)Google Scholar
  18. 18.
    Pandey, S., Wu, L., Guru, S. M., et al.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 24th International Conference on Advanced Information Networking and Applications, pp. 400–407. IEEE, Biopolis (2010)Google Scholar
  19. 19.
    Kokilavani, T., George Amalarethinam, D.I.: Load balanced Min-Min algorithm for static metatask scheduling in grid computing. Int. J. Comput. Appl. 20(2), 42–48 (2011)Google Scholar
  20. 20.
    Rahmani, A.M., Gia, T.N., Negash, B., et al.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 78(2), 641–658 (2018)CrossRefGoogle Scholar
  21. 21.
    Farahani, B., Firouzi, F., Chang, V., et al.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 78(2), 659–676 (2018)CrossRefGoogle Scholar
  22. 22.
    Ramírez-Gallego, S., Fernández, A., García, S., et al.: Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce. Inf. Fusion 42(6), 51–61 (2018)CrossRefGoogle Scholar
  23. 23.
    Netjinda, N., Sirinaovakul, B., Achalakul, T.: Cost optimal scheduling in Iaas for dependent workload with particle swarm optimization. J. Supercomput. 68(3), 1579–1603 (2014)CrossRefGoogle Scholar
  24. 24.
    Li, X., Jia, X., Zhu, E., et al.: A novel computation method for adaptive inertia weight of task scheduling algorithm. J. Comput. Res. Dev. 53(9), 1990–1999 (2016)Google Scholar
  25. 25.
    Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)CrossRefGoogle Scholar
  26. 26.
    Chen, X., Jiao, L., Li, W., et al.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)CrossRefGoogle Scholar
  27. 27.
    Sarangi, S. R., Goel, S., and Singh, B.: Energy efficient scheduling in IoT networks. In: Proceedings of Symposium on Applied Computing, pp. 1–8. ACM, New York (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyAnhui UniversityHefeiChina
  2. 2.School of Information TechnologyDeakin UniversityGeelongAustralia

Personalised recommendations