Continuum Models of Collective Cell Migration

  • Shiladitya BanerjeeEmail author
  • M. Cristina Marchetti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1146)


Collective cell migration plays a central role in tissue development, morphogenesis, wound repair and cancer progression. With the growing realization that physical forces mediate cell motility in development and physiology, a key biological question is how cells integrate molecular activities for force generation on multicellular scales. In this review we discuss recent advances in modeling collective cell migration using quantitative tools and approaches rooted in soft matter physics. We focus on theoretical models of cell aggregates as continuous active media, where the feedback between mechanical forces and regulatory biochemistry gives rise to rich collective dynamical behavior. This class of models provides a powerful predictive framework for the physiological dynamics that underlies many developmental processes, where cells need to collectively migrate like a viscous fluid to reach a target region, and then stiffen to support mechanical stresses and maintain tissue cohesion.


Continuum modelling Cell migration Cell mechanics Tissue mechanics Active matter 



SB acknowledges support from a Strategic Fellowship at the Institute for the Physics of Living Systems at UCL, UCL Global Engagement Fund, Royal Society Tata University Research Fellowship (URF\R1\180187), and Human Frontiers Science Program (HFSP RGY0073/2018). MCM was supported by the National Science Foundation at Syracuse University through award DMR-1609208 and at KITP under Grant PHY-1748958, and by the Simons Foundation through a Targeted Grant Award No. 342354. MCM thanks M. Czajkowski for useful discussions and the KITP for hospitality during completion of some of this work.


  1. Ahmadi A, Marchetti MC, Liverpool TB (2006) Hydrodynamics of isotropic and liquid crystalline active polymer solutions. Phys Rev E 74(6):061913CrossRefGoogle Scholar
  2. Ajeti V, Tabatabai AP, Fleszar AJ, Staddon MF, Seara DS, Suarez C, Yousafzai MS, Bi D, Kovar DR, Banerjee S, Murrell MP (2019) Wound healing coordinates actin architectures to regulate mechanical work. Nat Phys 5:696CrossRefGoogle Scholar
  3. Albert PJ, Schwarz US (2016) Dynamics of cell ensembles on adhesive micropatterns: bridging the gap between single cell spreading and collective cell migration. PLoS Comput Biol 12(4):e1004863PubMedPubMedCentralCrossRefGoogle Scholar
  4. Angelini TE, Hannezo E, Trepat X, Fredberg JJ, Weitz DA (2010) Cell migration driven by cooperative substrate deformation patterns. Phys Rev Lett 104(16):168104PubMedPubMedCentralCrossRefGoogle Scholar
  5. Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg JJ, Weitz DA (2011) Glass-like dynamics of collective cell migration. Proc Nat Acad Sci 108(12):4714PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anon E, Serra-Picamal X, Hersen P, Gauthier NC, Sheetz MP, Trepat X, Ladoux B (2012) Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc Nat Acad Sci 109(27):10891PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arciero J, Mi Q, Branca MF, Hackam DJ, Swigon D (2011) Continuum model of collective cell migration in wound healing and colony expansion. Biophys J 100:535PubMedPubMedCentralCrossRefGoogle Scholar
  8. Banerjee S, Marchetti MC (2011a) Substrate rigidity deforms and polarizes active gels. Europhys Lett 96(2):28003CrossRefGoogle Scholar
  9. Banerjee S, Marchetti MC (2011b) Instabilities and oscillations in isotropic active gels. Soft Matter 7(2):463CrossRefGoogle Scholar
  10. Banerjee S, Marchetti MC (2012) Contractile stresses in cohesive cell layers on finite-thickness substrates. Phys Rev Lett 109(10):108101PubMedCrossRefPubMedCentralGoogle Scholar
  11. Banerjee S, Marchetti MC (2013) Controlling cell-matrix traction forces by extracellular geometry. New J Phys 15(3):035015CrossRefGoogle Scholar
  12. Banerjee S, Liverpool TB, Marchetti MC (2011) Generic phases of cross-linked active gels: relaxation, oscillation and contractility. Europhys Lett 96(5):58004CrossRefGoogle Scholar
  13. Banerjee S, Utuje KJ, Marchetti MC (2015) Propagating stress waves during epithelial expansion. Phys Rev Lett 114(22):228101PubMedCrossRefPubMedCentralGoogle Scholar
  14. Banerjee DS, Munjal A, Lecuit T, Rao M (2017) Actomyosin pulsation and flows in an active elastomer with turnover and network remodeling. Nat Commun 8(1):1121PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barton DL, Henkes S, Weijer CJ, Sknepnek R (2017) Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Comput Biol 13(6):e1005569PubMedPubMedCentralCrossRefGoogle Scholar
  16. Basan M, Risler T, Joanny JF, Sastre-Garau X, Prost J (2009) Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J 3(4):265PubMedPubMedCentralCrossRefGoogle Scholar
  17. Basan M, Elgeti J, Hannezo E, Rappel WJ, Levine H (2013) Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing. Proc Nat Acad Sci 110(7):2452PubMedCrossRefPubMedCentralGoogle Scholar
  18. Begnaud S, Chen T, Delacour D, Mège RM, Ladoux B (2016) Mechanics of epithelial tissues during gap closure. Curr Opin Cell Biol 42:52PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bement WM, Forscher P, Mooseker MS (1993) A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 121(3):565PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bi D, Lopez J, Schwarz J, Manning ML (2015) A density-independent rigidity transition in biological tissues. Nat Phys 11(12):1074CrossRefGoogle Scholar
  21. Bi D, Yang X, Marchetti MC, Manning ML (2016) Motility-driven glass and jamming transitions in biological tissues. Phys Rev X 6(2):021011PubMedPubMedCentralGoogle Scholar
  22. Bischofs IB, Schmidt SS, Schwarz US (2009) Effect of adhesion geometry and rigidity on cellular force distributions. Phys Rev Lett 103(4):048101PubMedCrossRefPubMedCentralGoogle Scholar
  23. Blanch-Mercader C, Casademunt J (2017) Hydrodynamic instabilities, waves and turbulence in spreading epithelia. Soft Matter 13(38):6913PubMedCrossRefPubMedCentralGoogle Scholar
  24. Blanch-Mercader C, Vincent R, Bazellières E, Serra-Picamal X, Trepat X, Casademunt J (2017) Effective viscosity and dynamics of spreading epithelia: a solvable model. Soft Matter 13(6):1235PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bois JS, Jülicher F, Grill SW (2011) Pattern formation in active fluids. Phys Rev Lett 106(2):028103PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bove A, Gradeci D, Fujita Y, Banerjee S, Charras G, Lowe AR (2017) Local cellular neighborhood controls proliferation in cell competition. Mol Biol Cell 28(23):3215PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brugués A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Muñoz JJ, Brodland GW, Ladoux B, Trepat X (2014) Forces driving epithelial wound healing. Nat Phys 10(9):683PubMedPubMedCentralCrossRefGoogle Scholar
  28. Camley BA, Rappel WJ (2017) Physical models of collective cell motility: from cell to tissue. J Phys D Appl Phys 50(11):113002PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chopra A, Tabdanov E, Patel H, Janmey PA, Kresh JY (2011) Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am J Physiol Heart Circ Physiol 300(4):H1252PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cochet-Escartin O, Ranft J, Silberzan P, Marcq P (2014) Border forces and friction control epithelial closure dynamics. Biophys J 106(1):65PubMedPubMedCentralCrossRefGoogle Scholar
  31. D’Amico LA, Cooper MS (2001) Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dyn 222(4):611PubMedCrossRefGoogle Scholar
  32. Deforet M, Hakim V, Yevick HG, Duclos G, Silberzan P (2014) Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat Commun 5:3747PubMedCrossRefGoogle Scholar
  33. Delanoë-Ayari H, Rieu J, Sano M (2010) 4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys Rev Lett 105(24):248103PubMedCrossRefGoogle Scholar
  34. Discher DE, Janmey P, Wang Yl (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139PubMedCrossRefPubMedCentralGoogle Scholar
  35. Doxzen K, Vedula SRK, Leong MC, Hirata H, Gov NS, Kabla AJ, Ladoux B, Lim CT (2013) Guidance of collective cell migration by substrate geometry. Integr Biol 5(8):1026CrossRefGoogle Scholar
  36. Duclos G, Garcia S, Yevick H, Silberzan P (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10(14):2346PubMedCrossRefGoogle Scholar
  37. Duclos G, Erlenkämper C, Joanny JF, Silberzan P (2017) Topological defects in confined populations of spindle-shaped cells. Nat Phys 13(1):58CrossRefGoogle Scholar
  38. Du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Siberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Nat Acad Sci 102(7):2390PubMedCrossRefGoogle Scholar
  39. Edwards CM, Schwarz US (2011) Force localization in contracting cell layers. Phys Rev Lett 107(12):128101PubMedCrossRefGoogle Scholar
  40. Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 17(24):2095PubMedCrossRefPubMedCentralGoogle Scholar
  41. Farooqui R, Fenteany G (2005) Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci 118(1):51PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fenteany G, Janmey PA, Stossel TP (2000) Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr Biol 10(14):831PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106(11):2291PubMedPubMedCentralCrossRefGoogle Scholar
  44. Foty RA, Forgacs G, Pfleger CM, Steinberg MS (1994) Surface tensions of embryonic tissues predict their mutual envelopment behavior. Phys Rev Lett 72(14): 2298PubMedCrossRefPubMedCentralGoogle Scholar
  45. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836CrossRefGoogle Scholar
  47. Gonzalez-Rodriguez D, Bonnemay L, Elgeti J, Dufour S, Cuvelier D, Brochard-Wyart F (2013) Detachment and fracture of cellular aggregates. Soft Matter 9(7):2282CrossRefGoogle Scholar
  48. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gross P, Kumar KV, Grill SW (2017) How active mechanics and regulatory biochemistry combine to form patterns in development. Ann Rev Biophys 46:337CrossRefGoogle Scholar
  50. Guevorkian K, Colbert MJ, Durth M, Dufour S, Brochard-Wyart F (2010) Aspiration of biological viscoelastic drops. Phys Rev Lett 104(21):218101PubMedCrossRefPubMedCentralGoogle Scholar
  51. Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340(6137):1185PubMedCrossRefPubMedCentralGoogle Scholar
  52. Harris AR, Peter L, Bellis J, Baum B, Kabla AJ, Charras GT (2012) Characterizing the mechanics of cultured cell monolayers. Proc Nat Acad Sci 109(41):16449PubMedCrossRefPubMedCentralGoogle Scholar
  53. Heisenberg CP, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153(5):948PubMedCrossRefPubMedCentralGoogle Scholar
  54. Honda H, Eguchi G (1980) How much does the cell boundary contract in a monolayered cell sheet?. J Theor Biol 84(3):575PubMedCrossRefPubMedCentralGoogle Scholar
  55. Howard J, Grill SW, Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12(6):392PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3(5):E117PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kabla AJ (2012) Collective cell migration: leadership, invasion and segregation. J R Soc Interface p. rsif20120448Google Scholar
  58. Khalilgharibi N, Fouchard J, Recho P, Charras G, Kabla A (2016) The dynamic mechanical properties of cellularised aggregates. Curr Opin Cell Biol 42:113PubMedCrossRefPubMedCentralGoogle Scholar
  59. Khalilgharibi N, Fouchard J, Asadipour N, Yonis A, Harris A, Mosaffa P, Fujita Y, Kabla A, Baum B, Munoz JJ et al (2019) Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex. Nat Phys 15:839CrossRefGoogle Scholar
  60. Köpf MH, Pismen LM (2013) A continuum model of epithelial spreading. Soft Matter 9(14):3727CrossRefGoogle Scholar
  61. Ladoux B, Mège RM (2017) Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 18(12):743PubMedPubMedCentralCrossRefGoogle Scholar
  62. Latorre E, Kale S, Casares L, Gómez-González M, Uroz M, Valon L, Nair RV, Garreta E, Montserrat N, del Campo A, Ladoux B, Arroyo M, Trepat X (2018) Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563(7730):203PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lecuit T, Lenne PF, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lee P, Wolgemuth CW (2011) Crawling cells can close wounds without purse strings or signaling. PLoS Comput Biol 7(3):e1002007PubMedPubMedCentralCrossRefGoogle Scholar
  65. Legant WR, Choi CK, Miller JS, Shao L, Gao L, Betzig E, Chen CS (2013) Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Nat Acad Sci 110(3):881PubMedCrossRefPubMedCentralGoogle Scholar
  66. Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22(2):61PubMedCrossRefPubMedCentralGoogle Scholar
  67. Li B, Sun SX (2014) Coherent motions in confluent cell monolayer sheets. Biophys J 107(7):1532PubMedPubMedCentralCrossRefGoogle Scholar
  68. Linsmeier I, Banerjee S, Oakes PW, Jung W, Kim T, Murrell MP (2016) Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat Commun 7:12615PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lomakin AJ, Lee KC, Han SJ, Bui DA, Davidson M, Mogilner A, Danuser G (2015) Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 17(11):1435PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85(3):1143CrossRefGoogle Scholar
  71. Martin P, Lewis J (1992) Actin cables and epidermal movement in embryonic wound healing. Nature 360(6400):179PubMedCrossRefPubMedCentralGoogle Scholar
  72. Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Nat Acad Sci 108(12):4708PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mertz AF, Banerjee S, Che Y, German GK, Xu Y, Hyland C, Marchetti MC, Horsley V, Dufresne ER (2012) Scaling of traction forces with the size of cohesive cell colonies. Phys Rev Lett 108(19):198101PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mertz AF, Che Y, Banerjee S, Goldstein JM, Rosowski KA, Revilla SF, Niessen CM, Marchetti MC, Dufresne ER, Horsley V (2013) Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc Nat Acad Sci 110(3):842PubMedCrossRefPubMedCentralGoogle Scholar
  75. Murray J, Oster G (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19(3):265PubMedCrossRefPubMedCentralGoogle Scholar
  76. Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 16(8):486PubMedCrossRefPubMedCentralGoogle Scholar
  77. Noll N, Mani M, Heemskerk I, Streichan SJ, Shraiman BI (2017) Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nat Phys 13(12):1221PubMedPubMedCentralCrossRefGoogle Scholar
  78. Notbohm J, Banerjee S, Utuje KJ, Gweon B, Jang H, Park Y, Shin J, Butler JP, Fredberg JJ, Marchetti MC (2016) Cellular contraction and polarization drive collective cellular motion. Biophys J 110(12):2729PubMedPubMedCentralCrossRefGoogle Scholar
  79. Oakes PW, Banerjee S, Marchetti MC, Gardel ML (2014) Geometry regulates traction stresses in adherent cells. Biophys J 107(4):825PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pérez-González C, Alert R, Blanch-Mercader C, Gómez-González M, Kolodziej T, Bazellieres E, Casademunt J, Trepat X (2018) Active wetting of epithelial tissues. Nat Phys 15(1): 79PubMedPubMedCentralCrossRefGoogle Scholar
  81. Petitjean L, Reffay M, Grasland-Mongrain E, Poujade M, Ladoux B, Buguin A, Silberzan P (2010) Velocity fields in a collectively migrating epithelium. Biophys J 98(9):1790PubMedPubMedCentralCrossRefGoogle Scholar
  82. Phillips H, Steinberg M (1978) Embryonic tissues as elasticoviscous liquids. I. Rapid and slow shape changes in centrifuged cell aggregates. J Cell Sci 30(1):1Google Scholar
  83. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Nat Acad Sci 104(41):15988PubMedCrossRefPubMedCentralGoogle Scholar
  84. Prost J (1995) The physics of liquid crystals, vol 83. Oxford university press, OxfordGoogle Scholar
  85. Prost J, Jülicher F, Joanny JF (2015) Active gel physics. Nat Phys 11(2):111CrossRefGoogle Scholar
  86. Ranft J, Basan M, Elgeti J, Joanny JF, Prost J, Jülicher F (2010) Fluidization of tissues by cell division and apoptosis. Proc Nat Acad Sci 107(49):20863PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ravasio A, Le AP, Saw TB, Tarle V, Ong HT, Bertocchi C, Mège RM, Lim CT, Gov NS, Ladoux B (2015a) Regulation of epithelial cell organization by tuning cell-substrate adhesion. Integr Biol 7(10):1228CrossRefGoogle Scholar
  88. Ravasio A, Cheddadi I, Chen T, Pereira T, Ong HT, Bertocchi C, Brugues A, Jacinto A, Kabla AJ, Toyama Y, et al (2015b) Gap geometry dictates epithelial closure efficiency. Nat Commun 6:7683PubMedPubMedCentralCrossRefGoogle Scholar
  89. Recho P, Ranft J, Marcq P (2016) Soft Matter 12:2381PubMedCrossRefPubMedCentralGoogle Scholar
  90. Robin FB, Michaux JB, McFadden WM, Munro EM (2018) J Cell Biol, 217(12):4230Google Scholar
  91. Roca-Cusachs P, Alcaraz J, Sunyer R, Samitier J, Farré R, Navajas D (2008) Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 94(12):4984PubMedPubMedCentralCrossRefGoogle Scholar
  92. Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19(7):742PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin-and myosin-dependent mechanism. Curr Biol 11(23):1847PubMedCrossRefPubMedCentralGoogle Scholar
  94. Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S, Toyama Y, Marcq P, Lim CT, Yeomans JM, Ladoux B (2017) Topological defects in epithelia govern cell death and extrusion. Nature 544(7649):212PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schaumann EN, Staddon MF, Gardel ML, Banerjee S (2018) Force localization modes in dynamic epithelial colonies. Mol Biol Cell 29(23):2835PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schwarz US, Safran SA (2013) Physics of adherent cells. Rev Mod Phys 85(3):1327CrossRefGoogle Scholar
  97. Segerer FJ, Thüroff F, Alberola AP, Frey E, Rädler JO (2015) Emergence and persistence of collective cell migration on small circular micropatterns. Phys Rev Lett 114(22):228102PubMedCrossRefPubMedCentralGoogle Scholar
  98. Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8(8):628CrossRefGoogle Scholar
  99. Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci 102(9):3318–3323PubMedCrossRefPubMedCentralGoogle Scholar
  100. Staddon MF, Bi D, Tabatabai AP, Ajeti V, Murrell MP, Banerjee S (2018) Cooperation of dual modes of cell motility promotes epithelial stress relaxation to accelerate wound healing. PLoS Comput Biol 14(10):e1006502PubMedPubMedCentralCrossRefGoogle Scholar
  101. Style RW, Boltyanskiy R, German GK, Hyland C, MacMinn CW, Mertz AF, Wilen LA, Xu Y, Dufresne ER (2014) Traction force microscopy in physics and biology. Soft Matter 10(23):4047PubMedCrossRefPubMedCentralGoogle Scholar
  102. Suarez C, Kovar DR (2016) Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 17(12):799PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tanner K, Mori H, Mroue R, Bruni-Cardoso A, Bissell MJ (2012) Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Nat Acad Sci 109(6):1973PubMedCrossRefPubMedCentralGoogle Scholar
  105. Théry M (2012) Cell mechanics: Wave of migration. Nat Phys 8(8):583CrossRefGoogle Scholar
  106. Théry M, Piel M (2009) Adhesive micropatterns for cells: a microcontact printing protocol. Cold Spring Harb Protoc 2009(7):pdbGoogle Scholar
  107. Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5(6):426CrossRefGoogle Scholar
  108. Vedula SRK, Peyret G, Cheddadi I, Chen T, Brugués A, Hirata H, Lopez-Menendez H, Toyama Y, De Almeida LN, Trepat X, et al (2015) Mechanics of epithelial closure over non-adherent environments. Nat Commun 6:6111PubMedPubMedCentralCrossRefGoogle Scholar
  109. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vincent R, Bazellières E, Pérez-González C, Uroz M, Serra-Picamal X, Trepat X (2015) Active tensile modulus of an epithelial monolayer. Phys Rev Lett 115(24):248103PubMedCrossRefPubMedCentralGoogle Scholar
  111. Walcott S, Sun SX (2010) Cytoskeletal cross-linking and bundling in motor-independent contraction. Proc Nat Acad Sci 107(17):7757PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wayne Brodland G, Wiebe CJ (2004) Mechanical effects of cell anisotropy on epithelia. Comput Methods Biomech Biomed Eng 7(2):91CrossRefGoogle Scholar
  113. Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4(11):907PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yabunaka S, Marcq P (2017) Cell growth, division, and death in cohesive tissues: A thermodynamic approach. Phys Rev E 96(2):022406PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zemel A, Rehfeldt F, Brown A, Discher D, Safran S (2010) Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys 6(6):468PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ziebert F, Swaminathan S, Aranson IS (2011) Model for self-polarization and motility of keratocyte fragments. J R Soc Interface p. rsif20110433Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University College LondonLondonUK
  2. 2.University of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations