Computational Modeling of Collective Cell Migration: Mechanical and Biochemical Aspects

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1146)


Collective cell migration plays key roles in various physiological and pathological processes in multicellular organisms, including embryonic development, wound healing, and formation of cancer metastases. Such collective migration involves complex crosstalk among cells and their environment at both biochemical and mechanical levels. Here, we review various computational modeling strategies that have been helpful in decoding the dynamics of collective cell migration. Most of such attempts have focused either aspect – mechanical or biochemical regulation of collective cell migration, and have yielded complementary insights. Finally, we suggest some possible ways to integrate these models to gain a more comprehensive understanding of collective cell migration.


Collective cell migration Epithelial mesenchymal plasticity Subcelluar element model Phase field model Wound healing 


  1. Albert PJ, Schwarz US (2016) Dynamics of cell ensembles on adhesive micropatterns: bridging the gap between single cell spreading and collective cell migration. PLOS Comp Biol 12(4):e1004863.
  2. Bi D, Lopez JH, Schwarz JM, Manning ML (2015) A density-independent rigidity transition in biological tissues. Nat Phys 11(12):1074–1079. CrossRefGoogle Scholar
  3. Bi D, Yang X, Marchetti MC, Manning ML (2016) Motility-driven glass and jamming transitions in biological tissues. Phys Rev X 6(2):1–13. CrossRefGoogle Scholar
  4. Bocci F, Jolly MK, Tripathi SC, Aguilar M, Hanash SM, Levine H, Onuchic JN (2017) Numb prevents a complete epithelial–mesenchymal transition by modulating notch signalling. J R Soc Interface 14(136):20170512. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bocci F, Levine H, Onuchic JN, Jolly MK, Jolly MK (2018) Deciphering the dynamics of epithelial-mesenchymal transition and cancer stem cells in tumor progression. Accessed 30 OctGoogle Scholar
  6. Brugués A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Muñoz JJ, Brodland GW, Ladoux B, Trepat X (2014) Forces driving epithelial wound healing. Nat Phys 10(9):683–690. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Camley BA, Rappel W-J (2017) Physical models of collective cell motility: from cell to tissue. J Phys D Appl Phys 50(11):113002. IOP Publishing. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Camley BA, Zhang Y, Zhao Y, Li B, Ben-Jacob E, Levine H, Rappel W-J (2014) Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns. Proc Natl Acad Sci 111(41):14770–14775. CrossRefPubMedGoogle Scholar
  9. Camley BA, Zimmermann J, Levine H, Rappel W-J (2016) Emergent collective chemotaxis without single-cell gradient sensing. Phys Rev Lett 098101 (March):1–6.
  10. Cheung, KJ, Ewald AJ (2016) A collective route to metastasis: seeding by tumor cell clusters. Science (New York, NY) 352(6282):167–69. American Association for the Advancement of Science.
  11. Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17(3):276–287. Nature Publishing Group. CrossRefPubMedGoogle Scholar
  12. Font-Clos F, Zapperi S, La Porta CAM (2018) Topography of epithelial-mesenchymal plasticity. Proc Natl Acad Sci U S A 115(23):5902–5907. National Academy of Sciences. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69(13):2013–2016. CrossRefPubMedGoogle Scholar
  14. Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25(9):556–566. CrossRefPubMedGoogle Scholar
  15. Honda H (1978) Description of cellular patterns by dirichlet domains: the two-dimensional case. J Theor Biol 72(3):523–543. CrossRefPubMedGoogle Scholar
  16. Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X (2015) An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. Edited by Michael PH. Stumpf. PLOS Comp Biol 11(11):e1004569. Public Library of Science.
  17. Huang, B, Lu M, Jia D, Ben-Jacob E, Levine H, Onuchic JN (2017) Interrogating the topological robustness of gene regulatory circuits by randomization. Edited by Chao Tang. PLOS Comp Biol 13(3):e1005456. Public Library of Science.
  18. Jia D, Jolly MK, Tripathi SC, Den Hollander P, Huang B, Lu M, Celiktas M et al (2017) Distinguishing mechanisms underlying EMT tristability. Cancer Converg 1(1):2. Springer. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jolly MK, Boareto M, Huang B, Jia D, Mingyang L, Ben-Jacob E, Onuchic JN, Levine H (2015) Implications of the hybrid epithelial/Mesenchymal phenotype in metastasis. Front Oncol 5(July):155. Frontiers. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, Mani SA, Pienta KJ, Ben-Jacob E, Levine H (2016) Stability of the hybrid epithelial/Mesenchymal phenotype. Oncotarget 7(19):27067–27084. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jolly MK, Preca B-T, Tripathi SC, Jia D, George JT, Hanash SM, Brabletz T, Stemmler MP, Maurer J, Levine H (2018a) Interconnected feedback loops among ESRP1, HAS2, and CD44 Regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2(3):031908. AIP Publishing LLC. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H (2018b) Hybrid epithelial/Mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther.
  23. Kalluri, R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–28. American Society for Clinical Investigation.
  24. Koride S, Loza AJ, Sun SX, Koride S, Loza AJ, Sun SX (2018) Epithelial vertex models with active biochemical regulation of contractility can explain organized collective cell motility epithelial vertex models with active biochemical regulation of contractility can explain organized collective cell motility. APL Bioeng:031906.
  25. Löber J, Ziebert F, Aranson IS (2015) Collisions of deformable cells lead to collective migration. Sci Rep 5:1–7. CrossRefGoogle Scholar
  26. Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E (2013) MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A 110(45):18144–18149. National Academy of Sciences. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Martin P, Shaw TJ, Martin P, Lecuit T, Lenne P-F, Supplementary Fig, Trepat X et al (2015) Gap geometry dictates epithelial closure efficiency. Nat Commun 6(1):7683. The Author(s). CrossRefGoogle Scholar
  28. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-Mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nieto M, Angela R, Huang Y-J, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45. Cell Press. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Petitjean L, Reffay M, Grasland-Mongrain E, Poujade M, Ladoux B, Buguin A, Silberzan P (2010) Velocity fields in a collectively migrating epithelium. Biophys J 98(9):1790–1800. Biophysical Society. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci 104(41):15988–15993. CrossRefPubMedGoogle Scholar
  32. Prost J, Jülicher F, Joanny J-F (2015) Active gel physics. Nat Phys 11(2):111–117. Nature Publishing Group. CrossRefGoogle Scholar
  33. Reffay M, Petitjean L, Coscoy S, Grasland-Mongrain E, Amblard F, Buguin A, Silberzan P (2011) Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys J 100(11):2566–2575. Biophysical Society. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S, Amblard F, Camonis J, Silberzan P (2014) Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol 16(3):217–223. CrossRefPubMedGoogle Scholar
  35. Riahi R, Sun J, Wang S, Long M, Zhang DD, Wong PK (2015) Notch1–Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration. Nat Commun 6(1):6556. Nature Publishing Group. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sandersius SA, Newman TJ (2008) Modeling cell rheology with the subcellular element model. Phys Biol 5(1): 015002. IOP Publishing.
  37. Sandersius SA, Weijer CJ, Newman TJ (2011) Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes. Phys Biol 8(4): 045007. IOP Publishing.
  38. Scarpa E, Mayor R (2016) Collective cell migration in development. JCell Biol 212(2):143–155. The Rockefeller University Press. CrossRefGoogle Scholar
  39. Segerer FJ, Thüroff F, Alberola AP, Frey E, Rädler JO (2015) Emergence and persistence of collective cell migration on small circular micropatterns. Phys Rev Lett 114(22):228102. American Physical Society. CrossRefPubMedGoogle Scholar
  40. Sepúlveda N, Petitjean L, Cochet O, Grasland-Mongrain E, Silberzan P, Hakim V (2013) Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput Biol 9(3).
  41. Shao D, Rappel W-J, Levine H (2010) Computational model for cell morphodynamics. Phys Rev Lett 105(10):108104. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci 109(18):6851–6856. CrossRefPubMedGoogle Scholar
  43. Steinway SN, Zañudo JGT, Ding W, Rountree CB, Feith DJ, Loughran TP, Albert R, Albert R (2014) Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and wnt pathway activation. Cancer Res 74(21):5963–5977. NIH Public Access. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Steinway SN, Zañudo JGT, Michel PJ, Feith DJ, Loughran TP, Albert R (2015) Combinatorial interventions Inhibit TGFβ-Driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. Npj Sys Biol Appl 1(1):15014. Nature Publishing Group. CrossRefGoogle Scholar
  45. Szabó A, Ünnep R, Méhes E, Twal WO, Argraves WS, Cao Y, Czirók A (2010) Collective cell motion in endothelial monolayers. Phys Biol 7(4): 046007. IOP Publishing.
  46. Tarle V, Ravasio A, Hakim V, Gov NS (2015) Modeling the finger instability in an expanding cell monolayer. Integr Biol (United Kingdom) 7(10):1218–1227. Royal Society of Chemistry. CrossRefGoogle Scholar
  47. Tarle V, Gauquelin E, Vedula SRK, D’Alessandro J, Lim CT, Ladoux B, Gov NS (2017) Modeling collective cell migration in geometric confinement. Phys Biol 14(3):035001. IOP Publishing. CrossRefPubMedGoogle Scholar
  48. te Boekhorst V, Preziosi L, Friedl P (2016) Plasticity of cell migration in vivo and in silico. Annu Rev Cell Dev Biol 32(1):491–526. CrossRefGoogle Scholar
  49. Vedula SRK, Peyret G, Cheddadi I, Chen T, Brugués A, Hirata H, Lopez-Menendez H et al (2015) Mechanics of epithelial closure over non-adherent environments. Nat Commun 6(January):6111. Nature Publishing Group. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vishwakarma M, Di Russo J, Probst D, Schwarz US, Das T, Spatz JP (2018) Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nat Commun 9(1):3469. Nature Publishing Group.
  52. Wigner E, Seitz F (1933) On the constitution of metallic sodium. Phys Rev 43(10):804–810. CrossRefGoogle Scholar
  53. Yang Y, Levine H (2018) Role of the supracellular actomyosin cable during epithelial wound healing. Soft Matter 14(23):4866–4873. CrossRefPubMedGoogle Scholar
  54. Zhang J, Tian X-J, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J (2014) TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 7(345):ra91. American Association for the Advancement of Science. CrossRefPubMedGoogle Scholar
  55. Ziebert F, Swaminathan S, Aranson IS (2012) Model for self-polarization and motility of keratocyte fragments. J R Soc Interface 9(70):1084–92. The Royal Society.
  56. Zimmermann J, Camley BA, Rappel W-j, Levine H (2016) Contact inhibition of locomotion determines cell – cell and cell – substrate forces in tissues. Proc Natl Acad Sci 113(10).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Theoretical Biological PhysicsRice UniversityHoustonUSA
  2. 2.Centre for BioSystems Science and EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations