Advertisement

Electro-Magneto-Elastic Coupled Waves in Piezoactive Periodic Structures

  • Karen B. GhazaryanEmail author
  • Davit G. Piliposyan
  • Gayane T. Piliposian
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 109)

Abstract

Based on the complete set of Maxwell’ electrodynamics equations and the theory of elasticity the two-dimensional equations have obtained describing the coupled wave process in piezoactive electro-magneto-elastic (MEE) structure and allowing solution of a new class of problems, in particular, the problems of propagation and internal resonance of electro-magneto-elastic waves in periodic MEE structures. For longitudinal lattice vibrations of oppositely polarized MEE periodic superlattice the effect of phonon–photon polariton is investigated with a full three-phase coupling between elastic, electromagnetic fields. The results show that the new coupled phonon–photon polariton exhibits properties different from piezoelectric or piezomagneticpolaritons.

References

  1. 1.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. V 442, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    Nan, C.-W., et al.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101–33 (2008)Google Scholar
  3. 3.
    Pakam, N., Arockiarajan, A.: An analytical model for predicting the effective properties of magneto-electro-elastic (MEE) composites. Comput. Mater. Sci. 65, 19–28 (2012)Google Scholar
  4. 4.
    Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)CrossRefGoogle Scholar
  5. 5.
    Du, J., Jin, X., Wang, J.: Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mech. 192(1–4), 169–189 (2007)CrossRefGoogle Scholar
  6. 6.
    Mai, Y.W., Niraula, O.P., Wang, B.L.: A horizontal shear surface wave in magnetoelectroelastic materials. Philos. Mag. Lett. 87(1), 53–58 (2007)CrossRefGoogle Scholar
  7. 7.
    Wei, W.-Y., Liu, J.-X., Fang, D.-N.: Existence of shear horizontal surface waves in a magneto-electro-elastic material. Chin. Phys. Lett. 26(10), 104301 (2009)CrossRefGoogle Scholar
  8. 8.
    Piliposyan, D.: Shear surface waves at the interface of two magneto-electro-elastic media. Multidiscip. Model. Mater. Struct. 8(3), 417–426 (2012)CrossRefGoogle Scholar
  9. 9.
    Yu, L., et al.: Piezoelectric wafer active sensors for in situ ultrasonic-guided wave SHM. Fatigue Fract. Eng. Mater. Struct. 31(8), 611–628 (2008)CrossRefGoogle Scholar
  10. 10.
    Li, S.: The electromagneto-acoustic surface wave in a piezoelectric medium: the bleustein-gulyaev mode. J. Appl. Phys. 80(9), 5264–5269 (1996)CrossRefGoogle Scholar
  11. 11.
    Belubekyan, M.V.: Screen surface shear wave in a piezo-active semi-space of hexagonal symmetry. 2008. In: Proceedings of the 6th International Conference Problems of Dynamics of Interaction of Deformable Media, Yerevan, pp. 125–130Google Scholar
  12. 12.
    Piliposian, G.T., Avetisyan, A.S., Ghazaryan, K.B.: Shear wave propagation in periodic phononic/photonic piezoelectric medium. Wave Motion 49(1), 125–134 (2012)CrossRefGoogle Scholar
  13. 13.
    Piliposyan, D.G., Ghazaryan, K.B., Piliposian, G.T.: Shear Bloch waves and coupled phonon–polariton in periodic piezoelectric waveguides. Ultrasonics 54(2), 644–654 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, H., et al.: Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect. Phys. Rev. B 71(12), 125106 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhang, X.-J., et al.: Phonon-polariton dispersion and the polariton based photonic band gap in piezoelectric superlattices. Phys. Rev. B 69(8), 085118 (2004)CrossRefGoogle Scholar
  16. 16.
    Huang, C., Zhu, Y.: Piezoelectric-induced polariton coupling in a superlattice. Phys. Rev. Lett. 94(11), 117401 (2005)CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., et al.: New type of polariton in a piezoelectric superlattice. Phys. Rev. Lett. 90(5), 053903 (2003)CrossRefGoogle Scholar
  18. 18.
    Piliposyan, D., Ghazaryan, K., Piliposian, G.: Magneto-electro-elastic polariton coupling in a periodic structure. J. Phys. D: Appl. Phys. 48(17), 175501 (2015)Google Scholar
  19. 19.
    Yakhno, V.G, Yakhno, T.M.: Maxwell’s equations for bi-anisotropic materials as a symmetric hyperbolic system: Theory and computer application. In: 2011 International Conference on 2011 Electromagnetics in Advanced Applications (ICEAA), pp. 50–53Google Scholar
  20. 20.
    Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)Google Scholar
  21. 21.
    Xue, C.X,E.: Pan, On the longitudinal wave along a functionally graded magneto-electro-elastic rod. Int. J. Eng. Sci. 62, 48–55 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karen B. Ghazaryan
    • 1
    Email author
  • Davit G. Piliposyan
    • 1
  • Gayane T. Piliposian
    • 2
  1. 1.Institute of Mechanics, National Academy of SciencesYerevanArmenia
  2. 2.Department of Mathematical SciencesThe University of LiverpoolLiverpoolUK

Personalised recommendations