Advertisement

Injection-Locking of Nonharmonic Oscillators

  • Fei Yuan
Chapter

Abstract

This chapter investigates how Barkhausen criteria can be used to analyze ring oscillators. The modeling of harmonic oscillators and relaxation oscillators is explored with a special attention to the distinct nonlinear characteristics of relaxation oscillators. The representation of a nonharmonic oscillator with a set of harmonic oscillators is presented. The fundamentals of Volterra series are reviewed. The concept of the Volterra elements of a nonlinear element and the Volterra circuits of a nonlinear circuit are introduced and the process of how to obtain them is exemplified. The modeling of voltage comparators is studied. The Volterra circuits of an injection-locked nonharmonic oscillator are derived and the characteristics of the Volterra circuits are investigated. The chapter explores how the Volterra circuit approach can be used to analyze the dual-comparator relaxation oscillator under the injection of a pair of differential currents and how the high-order Volterra circuits of the oscillator contribute to the effective injection signals of the first-order Volterra circuit of the oscillator. Finally, the lock range of the dual-comparator relaxation oscillator is investigated.

References

  1. 3.
    J. Bae, L. Yan, H. Yoo, A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid State Circuits 46(4), 928–937 (2011)CrossRefGoogle Scholar
  2. 4.
    J. Bae, H. Yoo, A 45 μW injection-locked FSK wake-up receiver with frequency-to-envelope conversion for crystal-less wireless body area network. IEEE J. Solid State Circuits 50(6), 1351–1360 (2015)CrossRefGoogle Scholar
  3. 12.
    J. Chen, A. Hu, Y. Fan, R. Bashirullah, Noise suppression in injection-locked ring oscillators. IEEE Lett. 48(6), 323–324 (2012)CrossRefGoogle Scholar
  4. 13.
    D. Cherniak, R. Nonis, F. Padovan, A precision 140 MHz relaxation oscillator in 40 nm CMOS with 28 ppm/C frequency stability for automotive SoC applications, in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (IEEE, Piscataway, 2017), pp. 57–60Google Scholar
  5. 14.
    J. Chien, L. Lu, Analysis and design of wideband injection-locked ring oscillators with multiple-input injection. IEEE J. Solid State Circuits 42(9), 1906–1915 (2007)CrossRefGoogle Scholar
  6. 20.
    EPC, Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860MHz–960MHz, Version 1.0.9 (EPCglobal, 2005)Google Scholar
  7. 22.
    M. Fujishima, K. Amamoto, A 1.0 V 10.2 GHz CMOS frequency divider with differential injection locking, in Proceedings of the IEEE Topical Conference on Wireless Communications Technology (IEEE, Piscataway, 2003), pp. 164–165Google Scholar
  8. 34.
    S. Jang, P. Lu, M. Juang, Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load. Microw. Opt. Technol. Lett. 50(10), 2722–2725 (2008)CrossRefGoogle Scholar
  9. 37.
    F. Kocer, M. Flynn, A new transponder architecture with on-chip ADC for long-range telemetry applications. IEEE J. Solid State Circuits 41(5), 1142–1148 (2006)CrossRefGoogle Scholar
  10. 38.
    Y. Lam, S. Kim, A 16.6 μW 32.8 MHz monolithic CMOS relaxation oscillator, in Proceedings of the IEEE Asian Solid-State Circuits Conference (IEEE, Piscataway, 2014), pp. 161–164Google Scholar
  11. 44.
    Y. Lo, H. Chen, J. Silva-Martinez, S. Hoyos, A 1.8V, sub-mW, over 100% locking range, divide-by-3 and 7 complementary-injection-locked 4 GHz frequency divider, in Proceedings of IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2009), pp. 259–262Google Scholar
  12. 50.
    B. Mesgarzadeh, A. Alvandpour, A study of injection locking in ring oscillators, in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, Piscataway, 2005), pp. 5465–5468Google Scholar
  13. 51.
    B. Mesgarzadeh, A. Alvandpour, First-harmonic injection-locked ring oscillators, in Proceedings of IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2006), pp. 733–736,Google Scholar
  14. 52.
    J. Mikulic, G. Schatzberger, A. Baric, A 1-MHz on-chip relaxation oscillator with comparator delay cancellation, in Proceedings of the IEEE European Solid State Circuits Conference (IEEE, Piscataway, 2017), pp. 95–98Google Scholar
  15. 55.
    A. Mirzaei, M. Heidari, R. Bagheri, A. Abidi, Multi-phase injection widens lock range of ring-oscillator-based frequency dividers. IEEE J. Solid State Circuits 43(3), 656–671 (2008)CrossRefGoogle Scholar
  16. 64.
    B. Razavi, A study of phase noise in CMOS oscillators. IEEE J. Solid State Circuits 31(3), 331–343 (1996)CrossRefGoogle Scholar
  17. 65.
    B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, Boston, 2003)Google Scholar
  18. 66.
    B. Razavi, A study of injection locking and pulling in oscillators. IEEE J. Solid State Circuits 39(9), 1415–1424 (2004)CrossRefGoogle Scholar
  19. 67.
    M. Schetzen, The Volterra and Wiener Theory of Nonlinear Systems (Wiley, New York, 1981)zbMATHGoogle Scholar
  20. 73.
    N. Soltani, F. Yuan, Non-harmonic injection-locked phase-locked loops with applications in remote frequency calibration of passive wireless transponders. IEEE Trans. Circuits Syst. I 57(12), 2381–2393 (2010)MathSciNetCrossRefGoogle Scholar
  21. 77.
    H. Tong, S. Cheng, A. Karsilayan, J. Martinez, An injection-locked frequency divider with multiple highly nonlinear injection stages and large division ratios. IEEE Trans. Circuits Syst. II 54(4), 313–317 (2007)CrossRefGoogle Scholar
  22. 82.
    C. van den Bos, C. Verhoeven, Frequency division using an injection-locked relaxation oscillator, in Proceedings of IEEE International Symposium on Circuits and Systems, vol. 4 (IEEE, Piscataway, 2002), pp. 517–520Google Scholar
  23. 85.
    J. Vlach, K. Singhal, Computer Methods for Circuit Analysis and Design (Van Nostrand Reinhold, New York, 1993)Google Scholar
  24. 86.
    P. Wampacq, W. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer Academic, Boston, 1998)CrossRefGoogle Scholar
  25. 88.
    H. Wang, A 1.8 V 3 mW 16.8 GHz frequency divider in 0.25 μm CMOS, in IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, Piscataway, 2000), pp. 196–197Google Scholar
  26. 89.
    J. Wang, W. L. Goh, X. Liu, J. Zhou, A 12.77-MHz 31 ppm/C on-chip RC relaxation oscillator with digital compensation technique. IEEE Trans. Circuits Syst. I 63(11), 1816–1824 (2016)CrossRefGoogle Scholar
  27. 95.
    K. Yamamoto, M. Fujishima, A 44-μW 4.3-GHz injection-locked frequency divider with 2.3-GHz locking range. IEEE J. Solid State Circuits 40(3), 671–677 (2005)CrossRefGoogle Scholar
  28. 100.
    X. Yu, M. Do, J. Ma, W. Lim, K. Yeo, X. Yan, Sub-1 V low power wide range injection-locked frequency divider. IEEE Microwave Wireless Compon. Lett. 17(7):528–530 (2007)CrossRefGoogle Scholar
  29. 103.
    F. Yuan, M. Li, A new CMOS class AB serial link transmitter with low supply voltage sensitivity. Analog Integr. Circ. Sig. Process 49(2), 171–180 (2006)CrossRefGoogle Scholar
  30. 104.
    F. Yuan, N. Soltani, A low-voltage low VDD sensitivity relaxation oscillator for passive wireless microsystems. IET Electron. Lett. 45(21), 1057–1058 (2009)CrossRefGoogle Scholar
  31. 106.
    F. Yuan, Y. Zhou, Frequency-domain study of lock range of non-harmonic oscillators with multiple multi-tone injections. IEEE Trans. Circuits Syst. I 60(6), 1395–1406 (2013)MathSciNetCrossRefGoogle Scholar
  32. 111.
    Y. Zhou, F. Yuan, Subthreshold CMOS active inductors with applications to low-power injection-locked oscillators for passive wireless microsystems, in Proceedings of the Midwest Symposium on Circuits and Systems (IEEE, Piscataway, 2010), pp. 885–888Google Scholar
  33. 112.
    Y. Zhou, F. Yuan. A study of lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach. IEEE Trans. Circuits Syst. II 58(10), 627–631 (2011)CrossRefGoogle Scholar
  34. 113.
    Y. Zhou, F. Yuan, Study of injection-locked non-harmonic oscillators using volterra series. IET Circuits Devices and Syst. 9(2), 119–130 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fei Yuan
    • 1
  1. 1.Electrical and Computer EngineeringRyerson UniversityTorontoCanada

Personalised recommendations