Advertisement

Injection-Locking Techniques for Harmonic Oscillators

  • Fei Yuan
Chapter

Abstract

This chapter explores the factors that affect the lock range of harmonic oscillators and the techniques that increase the lock range of harmonic oscillators. Our focus is on injection-locked frequency dividers where injection-locked harmonic oscillators are mostly encountered. The chapter further investigates the dependence of the lock range of harmonic oscillators on injection signaling. Specifically, we investigate the lock range of harmonic oscillators with two unitone injections injected into two symmetrical locations of the oscillators and the relation between the lock range and the phase of the injection signals. The gated-pumped and drain-pumped nonlinear characteristics of MOS transistors are studied. Various techniques to increase the lock range of harmonic oscillators including inductor series-peaking, transformer series-peaking, inductor shunt-peaking, current-reuse direct injection, quality factor reduction, resistor feedback, second harmonic extraction, transformer feedback, and dual injections are studied.

References

  1. 7.
    G. Begemann, A. Jacob, Conversion gain of MESFET drain mixers. IEEE Lett. 15(18), 567–568 (1979)CrossRefGoogle Scholar
  2. 8.
    A. Buonomo, A. Lo Schiavo, M. Awan, M. Asghar, M. Kennedy, A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation. IEEE Trans. Circuits Syst. I 60(12), 3126–3135 (2013)CrossRefGoogle Scholar
  3. 10.
    J. Cayrou, M. Gayral, J. Graffeuil, J. Sautereau, Simple expression for conversion gain of MESFET drain mixers. IEEE Lett. 29(17), 1514–1516 (1993)CrossRefGoogle Scholar
  4. 11.
    H. Chen, D. Chang, Y. Juang, S. Lu, A 30-GHz wideband low-power CMOS injection-locked frequency divider for 60-GHz wireless-LAN. IEEE Microwave Wireless Lett 18(2), 145–147 (2008)CrossRefGoogle Scholar
  5. 14.
    J. Chien, L. Lu, Analysis and design of wideband injection-locked ring oscillators with multiple-input injection. IEEE J. Solid State Circuits 42(9), 1906–1915 (2007)CrossRefGoogle Scholar
  6. 18.
    Y. Chuang, S. Lee, S. Jang, J. Chao, M. Juang, A ring-oscillator-based wide locking range frequency divider. IEEE Microwave Wireless Compon. Lett. 16(8), 470–472 (2006)CrossRefGoogle Scholar
  7. 19.
    F. Ellinger, L. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, H. Jackel. 30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology. IEEE Trans. Microwave Theory Tech. 52(5), 1382–1391 (2004)CrossRefGoogle Scholar
  8. 25.
    A. Hajimiri, S. Limotyrakis, T. Lee, Jitter and phase noise in ring oscillators. IEEE J. Solid State Circuits 34(6), 790–804 (1999)CrossRefGoogle Scholar
  9. 32.
    S. Jang, C. Chang, A 90 nm CMOS LC-Tank divide-by-3 injection-locked frequency divider with record locking range. IEEE Microwave Wireless Compon. Lett. 20(4), 229–231 (2010)CrossRefGoogle Scholar
  10. 33.
    S. Jang, C. Chang, W. Cheng, C. Lee, M. Juang, Low-power divide-by-3 injection-locked frequency dividers implemented with injection transformers. IET Electron. Lett. 45(5), 240–241 (2009)CrossRefGoogle Scholar
  11. 34.
    S. Jang, P. Lu, M. Juang, Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load. Microw. Opt. Technol. Lett. 50(10), 2722–2725 (2008)CrossRefGoogle Scholar
  12. 35.
    J. Jin, X. Yu, J. Zhou, T. Yan, Gigahertz range injection locked frequency dividers with band-width enhancement and supply rejection. Electron. Lett. 44(17), 999–1000 (2008)CrossRefGoogle Scholar
  13. 37.
    F. Kocer, M. Flynn, A new transponder architecture with on-chip ADC for long-range telemetry applications. IEEE J. Solid State Circuits 41(5), 1142–1148 (2006)CrossRefGoogle Scholar
  14. 45.
    T. Lou, Y. Chen, A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider. IEEE Trans. Microwave Theory Tech. 56(3), 620–625 (2008)CrossRefGoogle Scholar
  15. 66.
    B. Razavi, A study of injection locking and pulling in oscillators. IEEE J. Solid State Circuits 39(9), 1415–1424 (2004)CrossRefGoogle Scholar
  16. 71.
    H. Shin, H. Kim, Extraction technique of differential second harmonic output in CMOS LC VCO. IEEE Microwave Wireless Compon. Lett. 17(5), 379–381 (2007)CrossRefGoogle Scholar
  17. 74.
    M. Tiebout, A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider. IEEE J. Solid State Circuits 39(7), 1170–1174 (2004)CrossRefGoogle Scholar
  18. 78.
    P. Tsai, C. Liu, T. Huang, Wideband injection-locked divide-by-3 frequency divider design with regenerative second-harmonic feedback technique, in Proceedings of the European Microwave Integrated Circuit Conference (IEEE, Piscataway, 2012), pp. 293–296Google Scholar
  19. 91.
    H. Wu, A. Hajimiri, A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement, in IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, Piscataway, 2005), pp. 412–413Google Scholar
  20. 93.
    H. Wu, L. Zhang, A 16-to-18 GHz 0.18-m Epi-CMOS divide-by-3 injection-locked frequency divider, in IEEE International Solid-State Circuits Conference—Digest of Technical Papers (IEEE, Piscataway, 2006), pp. 2482–2491Google Scholar
  21. 94.
    K. Yamamoto, M. Fujishima, 55 GHz CMOS frequency divider with 3.2 GHz locking range, in Proceedings of the 30th European Solid-State Circuits Conference (IEEE, Piscataway, 2004), pp. 135–138Google Scholar
  22. 96.
    K. Yamamoto, M. Fujishima, 70 GHz CMOS harmonic injection-locked divider, in IEEE International Solid-State Circuits Conference—Digest of Technical Papers (IEEE, Piscataway, 2006), pp. 2472–2473Google Scholar
  23. 97.
    Y. Yeh, H. Chang, Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique. IEEE Trans. Microwave Theory Tech. 60(6), 1617–1625 (2012)CrossRefGoogle Scholar
  24. 99.
    X. Yu, H. Cheema, R. Mahmoudi, A. van Roermund, X. Yan, A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement. IEEE Microwave Wireless Compon. Lett. 19(9), 575–577 (2009)Google Scholar
  25. 105.
    F. Yuan, Y. Zhou, A phasor-domain study of lock range of harmonic oscillators with multiple injections. IEEE Trans. Circuits Syst. II 59(8), 466–470 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fei Yuan
    • 1
  1. 1.Electrical and Computer EngineeringRyerson UniversityTorontoCanada

Personalised recommendations