Advertisement

Injection-Locking of Harmonic Oscillators

  • Fei Yuan
Chapter

Abstract

This chapter presents the fundamentals of the oscillation of harmonic oscillators first. It is followed with a close examination of the noise spectrum of harmonic oscillators. The modeling of injection-locked harmonic oscillators using a nonlinear system and the first-harmonic injection-locking of harmonic oscillators are investigated. Both linear and nonlinear approaches capable of deriving the lock range of harmonic oscillators are studied. The chapter also investigates the superharmonic injection-locking of harmonic oscillators. Both the second-order and third-order superharmonic injection-locking of harmonic oscillators are studied. Divide-by-2 and divide-by-3 injection-locked frequency dividers, which are the representative applications of the superharmonic injection-locking of harmonic oscillators, are studied in detail. The subharmonic injection-locking of harmonic oscillators is investigated. The intrinsic relations among the lock range of harmonic oscillators in first-harmonic, superharmonic, and subharmonic injection-locking are explored. Finally, the phase noise of injection-locked harmonic oscillators is studied.

References

  1. 7.
    G. Begemann, A. Jacob, Conversion gain of MESFET drain mixers. IEEE Lett. 15(18), 567–568 (1979)CrossRefGoogle Scholar
  2. 8.
    A. Buonomo, A. Lo Schiavo, M. Awan, M. Asghar, M. Kennedy, A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation. IEEE Trans. Circuits Syst. I 60(12), 3126–3135 (2013)CrossRefGoogle Scholar
  3. 10.
    J. Cayrou, M. Gayral, J. Graffeuil, J. Sautereau, Simple expression for conversion gain of MESFET drain mixers. IEEE Lett. 29(17), 1514–1516 (1993)CrossRefGoogle Scholar
  4. 14.
    J. Chien, L. Lu, Analysis and design of wideband injection-locked ring oscillators with multiple-input injection. IEEE J. Solid State Circuits 42(9), 1906–1915 (2007)CrossRefGoogle Scholar
  5. 15.
    J. Chien, L. Lu, 40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS, in IEEE International Solid-State Circuits Conference—Digest of Technical Papers (IEEE, Piscataway, 2007), pp. 544–621Google Scholar
  6. 18.
    Y. Chuang, S. Lee, S. Jang, J. Chao, M. Juang, A ring-oscillator-based wide locking range frequency divider. IEEE Microwave Wireless Compon. Lett. 16(8), 470–472 (2006)CrossRefGoogle Scholar
  7. 19.
    F. Ellinger, L. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, H. Jackel. 30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology. IEEE Trans. Microwave Theory Tech. 52(5), 1382–1391 (2004)CrossRefGoogle Scholar
  8. 23.
    P. Gray, P. Hust, S. Lewis, R. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edn. (Wiley, New York, 2001)Google Scholar
  9. 25.
    A. Hajimiri, S. Limotyrakis, T. Lee, Jitter and phase noise in ring oscillators. IEEE J. Solid State Circuits 34(6), 790–804 (1999)CrossRefGoogle Scholar
  10. 26.
    F. Herzal, B. Razavi, A study of oscillator jitter due to supply and substrate noise. IEEE Trans. Circuits Syst. II 46(1), 56–62 (1999)CrossRefGoogle Scholar
  11. 33.
    S. Jang, C. Chang, W. Cheng, C. Lee, M. Juang, Low-power divide-by-3 injection-locked frequency dividers implemented with injection transformers. IET Electron. Lett. 45(5), 240–241 (2009)CrossRefGoogle Scholar
  12. 45.
    T. Lou, Y. Chen, A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider. IEEE Trans. Microwave Theory Tech. 56(3), 620–625 (2008)CrossRefGoogle Scholar
  13. 50.
    B. Mesgarzadeh, A. Alvandpour, A study of injection locking in ring oscillators, in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, Piscataway, 2005), pp. 5465–5468Google Scholar
  14. 63.
    H. Rategh, T. Lee, Superharmonic injection-locked frequency dividers. IEEE J. Solid State Circuits 34(6), 813–821 (1999)CrossRefGoogle Scholar
  15. 64.
    B. Razavi, A study of phase noise in CMOS oscillators. IEEE J. Solid State Circuits 31(3), 331–343 (1996)CrossRefGoogle Scholar
  16. 65.
    B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, Boston, 2003)Google Scholar
  17. 68.
    I. Schmideg, Harmonic synchronization of nonlinear oscillators. Proc. IEEE 59(8), 1250–1251 (1971)CrossRefGoogle Scholar
  18. 69.
    A. Sedra, K. Smith, Microelectronics Circuits (Oxford University Press, London, 1998)Google Scholar
  19. 83.
    S. Verma, H. Rategh, T. Lee, A unified model for injection-locked frequency divider. IEEE J. Solid State Circuits 38(6), 1015–1027 (2003)CrossRefGoogle Scholar
  20. 87.
    Y. Wan, X. Lai, J. Roychowdhury, Understanding injection locking in negative-resistance LC oscillators intuitively using nonlinear feedback analysis, in Proceedings of IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2005), pp. 729–732Google Scholar
  21. 92.
    V. Wu, C. Yu, Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range. IEEE Trans. Microwave Theory Tech. 55(8), 1649–1658 (2007)CrossRefGoogle Scholar
  22. 93.
    H. Wu, L. Zhang, A 16-to-18 GHz 0.18-m Epi-CMOS divide-by-3 injection-locked frequency divider, in IEEE International Solid-State Circuits Conference—Digest of Technical Papers (IEEE, Piscataway, 2006), pp. 2482–2491Google Scholar
  23. 94.
    K. Yamamoto, M. Fujishima, 55 GHz CMOS frequency divider with 3.2 GHz locking range, in Proceedings of the 30th European Solid-State Circuits Conference (IEEE, Piscataway, 2004), pp. 135–138Google Scholar
  24. 96.
    K. Yamamoto, M. Fujishima, 70 GHz CMOS harmonic injection-locked divider, in IEEE International Solid-State Circuits Conference—Digest of Technical Papers (IEEE, Piscataway, 2006), pp. 2472–2473Google Scholar
  25. 101.
    F. Yuan, Computer Methods for Analysis of Mixed-Mode Switching Circuits (Kluwer Academic, New York, 2004)Google Scholar
  26. 102.
    F. Yuan, CMOS Active Inductors and Transformers (Springer, New York, 2008)CrossRefGoogle Scholar
  27. 110.
    X. Zhang, X. Zhou, A. Daryoush, A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators. IEEE Trans. Microwave Theory Tech. 40(5), 895–902 (1992)CrossRefGoogle Scholar
  28. 112.
    Y. Zhou, F. Yuan. A study of lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach. IEEE Trans. Circuits Syst. II 58(10), 627–631 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fei Yuan
    • 1
  1. 1.Electrical and Computer EngineeringRyerson UniversityTorontoCanada

Personalised recommendations