Switched Fractional State-Space Predictive Control Methods for Non-Linear Fractional Systems

  • Stefan DomekEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)


In the paper two approaches for a switched fractional-order State-space Model Predictive Control (FOSMPC) for non-linear fractional systems are proposed. In the first one the model is successively linearized on-line and used for prediction, in the second one a linear approximation along the future process trajectory is also used. In both cases, as a result of linearization, the future control policy is calculated by means of quadratic optimization. The discussed FOSMPC algorithms are able to compensate for deterministic constant-type external and internal disturbances. In order to illustrate implementation steps of both control methods, precise algorithms of calculations to be carried out on-line at each sampling instant are given.


  1. 1.
    Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2004)zbMATHGoogle Scholar
  2. 2.
    Chen, Y.Q., Petráš, I., Xue, D.: Fractional order control. In: American Control Conference, St. Louis, pp. 1397–1410 (2009)Google Scholar
  3. 3.
    Ding, B.: Properties of parameter-dependent open-loop MPC for uncertain systems with polytopic description. Asian J. Control 12(1), 58–70 (2010)MathSciNetGoogle Scholar
  4. 4.
    Domek, S.: Robust predictive control of nonlinear processes. Szczecin University of Technology Press, Szczecin (2006). (in Polish)Google Scholar
  5. 5.
    Domek, S.: Switched state model predictive control of fractional-order nonlinear discrete-time systems. In: Pisano, A., Caponetto, R. (eds.) Advances in Fractional Order Control and Estimation, vol. 15, no. 3, pp. 658–668 (2013). Asian J. Control, Special IssueMathSciNetCrossRefGoogle Scholar
  6. 6.
    Domek, S.: Fractional-order differential calculus in model predictive control. West Pomeranian University of Technology Academic Press, Szczecin (2013). (in Polish)Google Scholar
  7. 7.
    Domek, S.: Multiple use of the fractional-order differential calculus in the model predictive control. In: 19th International Conference on Methods and Models in Automation and Robotics, Midęzyzdroje, pp. 359–362 (2014).
  8. 8.
    Domek, S.: Fractional-order model predictive control with small set of coincidence points. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 320, pp. 135–144. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Domek, S.: Model-plant mismatch in fractional order model predictive control. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357, pp. 281–291. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  10. 10.
    Domek, S.: Approximation and stability analysis of some kinds of switched fractional linear systems. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation. AISC, vol. 577, pp. 442–454. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  11. 11.
    Dzieliński, A., Sierociuk, D.: Stability of discrete fractional order state-space systems. J. Vibr. Control 14(9–10), 1543–1556 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)zbMATHGoogle Scholar
  13. 13.
    Fang, L., Lin, H., Antsaklis, P.J.: Stabilization and performance analysis for a class of switched systems. In: Proceedings of 43rd IEEE Conference on Decision Control, Atlantis, pp. 1179–1180 (2004)Google Scholar
  14. 14.
    Geromel, J.C., Colaneri, P.: Stability and stabilization of discrete time switched systems. Int. J. Control 79(7), 719–728 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)CrossRefGoogle Scholar
  16. 16.
    Ławryńczuk, M.: Nonlinear state-space predictive control with on-line linearisation and state estimation. Int. J. Appl. Math. Comput. Sci. 25(4), 833–847 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. 19(5), 59–70 (1999)CrossRefGoogle Scholar
  18. 18.
    Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)CrossRefGoogle Scholar
  19. 19.
    Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  21. 21.
    Murray-Smith, R., Johansen, T.: Multiple Model Approaches to Modeling and Control. Taylor and Francis, London (1997)Google Scholar
  22. 22.
    Nafsun, A.I., Yusoff, N.: Effect of model-plant mismatch on MPC controller performance. J. Appl. Sci. 21(11), 3579–585 (2011)Google Scholar
  23. 23.
    Ostalczyk, P.: The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst. Sci. 31(12), 1551–1561 (2000)CrossRefGoogle Scholar
  24. 24.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  25. 25.
    Romero, M., De Madrid, Á.P., Mañoso, C., Vinagre, B.M.: Fractional-order generalized predictive control: formulation and some properties. In: Proceedings of 11th International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 1495–1500 (2010)Google Scholar
  26. 26.
    Romero, M., Vinagre, B.M., De Madrid, Á.P.: GPC control of a fractional-order plant: improving stability and robustness. In: Proceedings of 17th IFAC World Congress, Seoul, pp. 14266–14271 (2008)Google Scholar
  27. 27.
    Sierociuk, D., Dzieliński, A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci. 16(1), 129–140 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Sun, Z., Ge, S.S.: Switched Linear Systems. Control and Design. Springer, London (2005)CrossRefGoogle Scholar
  29. 29.
    Sun, Z., Ge, S.S.: Analysis and synthesis of switched linear control systems. Automatica 41(2), 181–195 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Szűcs, A., Kvasnica, M., Fikar, M.: Optimal piecewise affine approximations of nonlinear functions obtained from measurements. In: Proceedings of 4th IFAC Conference on Analysis and Design of Hybrid Systems, Eindhoven, pp. 160–165 (2012)Google Scholar
  31. 31.
    Tatjewski, P.: Advanced Control of Industrial Processes. Springer, London (2007)zbMATHGoogle Scholar
  32. 32.
    Tatjewski, P.: Supervisory predictive control and on-line set-point optimization. Int. J. Appl. Math. Comput. Sci. 20(3), 483–495 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tatjewski, P.: Offset-free nonlinear predictive control with measured state and unknown asymptotically constant disturbances. In: Malinowski, K., Józefczyk, J.,Świątek, J. (eds.) Actual Problems in Automation and Robotics, Akademicka Oficyna Wydawnicza Exit, Warszawa, pp. 288–299 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Control Engineering and RoboticsWest Pomeranian University of Technology at SzczecinSzczecinPoland

Personalised recommendations