Advertisement

Complex Dynamics in Basic Two-Component Auto-Oscillation Systems with Fractional Derivatives of Different Orders

  • Bohdan DatskoEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

On the basis of simple two-component nonlinear incommensurate fractional-order systems with positive and negative feedbacks, some general properties of fractional auto-oscillation systems are established. By linear stability analysis and numerical simulation, it is shown that fractional derivative orders and ratio between them can substantially change the stability conditions of the system and lead to appearing of complex oscillations and attractors, which cannot be found in their integer counterparts.

Keywords

Fractional dynamics Nonlinear system Differential equation 

References

  1. 1.
    Agrawal, O.P., Tenreiro Machado, J.A., Sabatier, J.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Elsevier, New York (2007)zbMATHGoogle Scholar
  2. 2.
    Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)CrossRefGoogle Scholar
  3. 3.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)zbMATHGoogle Scholar
  4. 4.
    Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Springer, Heidelberg (2016)zbMATHGoogle Scholar
  5. 5.
    Tarasov, V.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Klafter, J., Lim, S.C., Metzler, Y.: Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)CrossRefGoogle Scholar
  7. 7.
    Petras, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38, 140–147 (2008).  https://doi.org/10.1016/j.chaos.2006.10.054CrossRefGoogle Scholar
  8. 8.
    Tavazoei, M., Haeri, M., Attari, M., Boluoki, S., Siami, M.: More details on analysis of fractional order Van der Pol oscillator. J. Vibr. Control 15, 803–819 (2009).  https://doi.org/10.1177/1077546308096101MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gafiychuk, V., Datsko, B.: Stability analysis and limit cycle in fractional system with Brusselator nonlinearities. Phys. Lett. 372, 4902–4904 (2008).  https://doi.org/10.1016/j.physleta.2008.05.045CrossRefzbMATHGoogle Scholar
  10. 10.
    Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007).  https://doi.org/10.1016/j.jmaa.2006.01.087MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Caponetto, R., Dongola, G., Fortuna, V., et al.: Fractional Order Systems: Modeling and Control Applications. World Scientific Publishing Company, Singapore (2010)CrossRefGoogle Scholar
  13. 13.
    Vasiliev, V.A., Romanovskii, Y.M., Chernavskii, D.S., et al.: Autowave Processes in Kinetic Systems: Spatial and Temporal Self-Organization in Physics, Chemistry, Biology, and Medicine. Springer, Berlin (1987)CrossRefGoogle Scholar
  14. 14.
    Datsko, B., Gafiychuk, V.: Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 17, 1673–1680 (2012).  https://doi.org/10.1016/j.cnsns.2011.08.037MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Datsko, B., Gafiychuk, V.: Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fractional Calc. Appl. Anal. 21, 237–253 (2018).  https://doi.org/10.1515/fca-2018-0015MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gafiychuk, V., Datsko, B.: Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E 75, 055201 (2007).  https://doi.org/10.1103/PhysRevE.75.055201CrossRefGoogle Scholar
  17. 17.
    Gafiychuk, V., Datsko, B.: Inhomogeneous oscillatory solutions in fractional reaction-diffusion systems and their computer modeling. Appl. Math. Comput. 198, 251–260 (2008).  https://doi.org/10.1016/j.amc.2007.08.065MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press, Oxford-New York-Toronto (1966)zbMATHGoogle Scholar
  19. 19.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  20. 20.
    Kerner, B.S., Osipov, V.V.: Autosolitons. Kluwer, Dordrecht (1994)CrossRefGoogle Scholar
  21. 21.
    Cross, M., Hohenberg, P.: Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).  https://doi.org/10.1103/RevModPhys.65.851CrossRefzbMATHGoogle Scholar
  22. 22.
    Nicolis, G., Prigogine, I.: Self-organization in Non-equilibrium Systems. Wiley, New York (1997)zbMATHGoogle Scholar
  23. 23.
    Kerner, B.S., Osipov, V.V.: Stochastic inhomogeneous structures in nonequilibrium systems. JETP 52, 1122–1132 (1980). 1980JETP...52.1122KGoogle Scholar
  24. 24.
    Gafiychuk, V., Datsko, B., Meleshko, V.: Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220, 215–225 (2008).  https://doi.org/10.1016/j.cam.2007.08.011MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2008).  https://doi.org/10.1016/j.camwa.2009.08.019MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–970 (1996). 10.1.1.40.4859Google Scholar
  27. 27.
    Gafiychuk, V., Datsko, B.: Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order. Phys. Rev. E 77, 066210-1–066210-9 (2008).  https://doi.org/10.1103/PhysRevE.77.066210MathSciNetCrossRefGoogle Scholar
  28. 28.
    Datsko, B., Gafiychuk, V.: Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives. J. Math. Sci. 165, 392–402 (2010).  https://doi.org/10.1007/s10958-010-9807-2CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Rzeszow University of TechnologyRzeszowPoland
  2. 2.Institute for Applied Problems of Mechanics and MathematicsNAS of UkraineLvivUkraine

Personalised recommendations