Advertisement

Numerical Simulations for Fitting Parameters of Linear and Logistic-Type Fractional-, Variable-Order Equations - Comparision of Methods

  • Piotr OziabloEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)

Abstract

In the work variable-, fractional-order backward difference of the Grünwald-Letnikov type is presented. The backward difference is used to generate simulated experimental data to which additional noise signal is added. Using prepared data four different algorithms of finding the parameter of the order function (assuming that the general family of the function is known) and constant \(\lambda \) coefficient are compared. The algorithms are: trust region algorithm, particle swarm algorithm, simulated annealing algorithm and genetic algorithm.

Keywords

Difference equations Eigenfunction Fractional variable-order Optimization algorithms 

Notes

Acknowledgment

The work was supported by Polish founds of National Science Center, granted on the basis of decision DEC-2016/23/B/ST7/03686.

References

  1. 1.
    Almeida, R., Bastos, N.R.O., Monteiro, M.T.T.: A fractional Malthusian growth model with variable order using an optimization approach. Published online in International Academic Press (2018).  https://doi.org/10.19139/soic.v6i1.465
  2. 2.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000).  https://doi.org/10.1142/3779CrossRefzbMATHGoogle Scholar
  3. 3.
    Kaczorek, T.: Fractional positive linear systems. Kybernetes 38(7/8), 1059–1078 (2009).  https://doi.org/10.1108/03684920910976826MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    May, R.: Simple mathematical models with very complicated dynamics. Nature (1976).  https://doi.org/10.1038/261459a0CrossRefGoogle Scholar
  5. 5.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995).  https://doi.org/10.1109/ICNN.1995.488968
  7. 7.
    Mozyrska, D., Wyrwas, M.: The Z-transform method and delta type fractional difference operators. Discrete Dyn. Nat. Soc. 25 (2015).  https://doi.org/10.1155/2015/852734CrossRefGoogle Scholar
  8. 8.
    Mozyrska, D., Wyrwas, M.: Systems with fractional variable-order difference operator of convolution type and its stability. ELEKTRONIKA IR ELEKTROTECHNIKA (2018).  https://doi.org/10.5755/j01.eie.24.5.21846
  9. 9.
    Mozyrska, D., Ostalczyk, P.: Generalized fractional-order discrete-time integrator. Complexity 2017, 1–11 (2017). Article ID 3452409.  https://doi.org/10.1155/2017/3452409MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nikolaev, A.G., Jacobson, S.: Simulated annealing. In: Handbook of Metaheuristics, vol. 146, pp. 1–39 (2010).  https://doi.org/10.1007/978-1-4419-1665-5_1Google Scholar
  11. 11.
    Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering, vol. 198. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  12. 12.
    Yuan, Y.: Nonlinear optimization: trust region algorithms. State Key Laboratory of Scientific and Engineering Computing, Academia Sinica, Beijing (1999)Google Scholar
  13. 13.
    Yuan, Y.: A review of trust region algorithms for optimization. State Key Laboratory of Scientific and Engineering Computing, Academia Sinica, Beijing (1999). 10.1.1.45.9964Google Scholar
  14. 14.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Computer ScienceBialystok University of TechnologyBiałystokPoland

Personalised recommendations